Loading…

On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors

We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical modelling of natural phenomena 2013, Vol.8 (5), p.71-83
Main Authors: Gonchenko, S.V., Ovsyannikov, I.I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3
cites cdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3
container_end_page 83
container_issue 5
container_start_page 71
container_title Mathematical modelling of natural phenomena
container_volume 8
creator Gonchenko, S.V.
Ovsyannikov, I.I.
description We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.
doi_str_mv 10.1051/mmnp/20138505
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1051_mmnp_20138505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_5820FB89_J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOHSX3vcPxJ0kbZpcbtNNpbCbiVcS0jRxcW0zkgrqr7fDr3PzwuHh5eVB6IrANYGCzLquP8woECYKKE7QhJQcMCdATtEEZMlwwXJxjqYpvcJ4jOQMYIKeN322bkOt22zh3Vs0evChT1lw2XYXrcWN72yfxt9I3HjnbOhCPOx86lJWWd34_iUbQlaFaPtP3Pq9zebDELUZQkyX6MzpNtnpT16gx9XtdnmHq836fjmvsBl3DLjMDRFEMs61lFALTm3Nc2gMl7ShvCiFFKCFkdrlNXWEGisoB2loLoCBZRcIf_eaGFKK1qlD9J2OH4qAOupRRz3qV88_79Ng3_9gHfeKl6wslIAnVQgKq4WQ6oF9AYwTZ0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gonchenko, S.V. ; Ovsyannikov, I.I.</creator><contributor>Zaks, M. ; Vougalter, V. ; Lerman, L. ; Turaev, D.</contributor><creatorcontrib>Gonchenko, S.V. ; Ovsyannikov, I.I. ; Zaks, M. ; Vougalter, V. ; Lerman, L. ; Turaev, D.</creatorcontrib><description>We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/20138505</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>37C05 ; 37C29 ; 37G25 ; 37G35 ; bifurcations ; homoclinic and heteroclinic orbits ; saddle-focus ; strange attractors</subject><ispartof>Mathematical modelling of natural phenomena, 2013, Vol.8 (5), p.71-83</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</citedby><cites>FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><contributor>Zaks, M.</contributor><contributor>Vougalter, V.</contributor><contributor>Lerman, L.</contributor><contributor>Turaev, D.</contributor><creatorcontrib>Gonchenko, S.V.</creatorcontrib><creatorcontrib>Ovsyannikov, I.I.</creatorcontrib><title>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</title><title>Mathematical modelling of natural phenomena</title><description>We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.</description><subject>37C05</subject><subject>37C29</subject><subject>37G25</subject><subject>37G35</subject><subject>bifurcations</subject><subject>homoclinic and heteroclinic orbits</subject><subject>saddle-focus</subject><subject>strange attractors</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMoOHSX3vcPxJ0kbZpcbtNNpbCbiVcS0jRxcW0zkgrqr7fDr3PzwuHh5eVB6IrANYGCzLquP8woECYKKE7QhJQcMCdATtEEZMlwwXJxjqYpvcJ4jOQMYIKeN322bkOt22zh3Vs0evChT1lw2XYXrcWN72yfxt9I3HjnbOhCPOx86lJWWd34_iUbQlaFaPtP3Pq9zebDELUZQkyX6MzpNtnpT16gx9XtdnmHq836fjmvsBl3DLjMDRFEMs61lFALTm3Nc2gMl7ShvCiFFKCFkdrlNXWEGisoB2loLoCBZRcIf_eaGFKK1qlD9J2OH4qAOupRRz3qV88_79Ng3_9gHfeKl6wslIAnVQgKq4WQ6oF9AYwTZ0E</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gonchenko, S.V.</creator><creator>Ovsyannikov, I.I.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</title><author>Gonchenko, S.V. ; Ovsyannikov, I.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>37C05</topic><topic>37C29</topic><topic>37G25</topic><topic>37G35</topic><topic>bifurcations</topic><topic>homoclinic and heteroclinic orbits</topic><topic>saddle-focus</topic><topic>strange attractors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonchenko, S.V.</creatorcontrib><creatorcontrib>Ovsyannikov, I.I.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonchenko, S.V.</au><au>Ovsyannikov, I.I.</au><au>Zaks, M.</au><au>Vougalter, V.</au><au>Lerman, L.</au><au>Turaev, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2013</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>71</spage><epage>83</epage><pages>71-83</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.</abstract><pub>EDP Sciences</pub><doi>10.1051/mmnp/20138505</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2013, Vol.8 (5), p.71-83
issn 0973-5348
1760-6101
language eng
recordid cdi_crossref_primary_10_1051_mmnp_20138505
source EZB-FREE-00999 freely available EZB journals
subjects 37C05
37C29
37G25
37G35
bifurcations
homoclinic and heteroclinic orbits
saddle-focus
strange attractors
title On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Global%20Bifurcations%20of%20Three-dimensional%20Diffeomorphisms%20Leading%20to%20Lorenz-like%20Attractors&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Gonchenko,%20S.V.&rft.date=2013&rft.volume=8&rft.issue=5&rft.spage=71&rft.epage=83&rft.pages=71-83&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/20138505&rft_dat=%3Cistex_cross%3Eark_67375_80W_5820FB89_J%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true