Loading…
On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors
We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz...
Saved in:
Published in: | Mathematical modelling of natural phenomena 2013, Vol.8 (5), p.71-83 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3 |
container_end_page | 83 |
container_issue | 5 |
container_start_page | 71 |
container_title | Mathematical modelling of natural phenomena |
container_volume | 8 |
creator | Gonchenko, S.V. Ovsyannikov, I.I. |
description | We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets. |
doi_str_mv | 10.1051/mmnp/20138505 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1051_mmnp_20138505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_5820FB89_J</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoOHSX3vcPxJ0kbZpcbtNNpbCbiVcS0jRxcW0zkgrqr7fDr3PzwuHh5eVB6IrANYGCzLquP8woECYKKE7QhJQcMCdATtEEZMlwwXJxjqYpvcJ4jOQMYIKeN322bkOt22zh3Vs0evChT1lw2XYXrcWN72yfxt9I3HjnbOhCPOx86lJWWd34_iUbQlaFaPtP3Pq9zebDELUZQkyX6MzpNtnpT16gx9XtdnmHq836fjmvsBl3DLjMDRFEMs61lFALTm3Nc2gMl7ShvCiFFKCFkdrlNXWEGisoB2loLoCBZRcIf_eaGFKK1qlD9J2OH4qAOupRRz3qV88_79Ng3_9gHfeKl6wslIAnVQgKq4WQ6oF9AYwTZ0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gonchenko, S.V. ; Ovsyannikov, I.I.</creator><contributor>Zaks, M. ; Vougalter, V. ; Lerman, L. ; Turaev, D.</contributor><creatorcontrib>Gonchenko, S.V. ; Ovsyannikov, I.I. ; Zaks, M. ; Vougalter, V. ; Lerman, L. ; Turaev, D.</creatorcontrib><description>We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/20138505</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>37C05 ; 37C29 ; 37G25 ; 37G35 ; bifurcations ; homoclinic and heteroclinic orbits ; saddle-focus ; strange attractors</subject><ispartof>Mathematical modelling of natural phenomena, 2013, Vol.8 (5), p.71-83</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</citedby><cites>FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4021,27921,27922,27923</link.rule.ids></links><search><contributor>Zaks, M.</contributor><contributor>Vougalter, V.</contributor><contributor>Lerman, L.</contributor><contributor>Turaev, D.</contributor><creatorcontrib>Gonchenko, S.V.</creatorcontrib><creatorcontrib>Ovsyannikov, I.I.</creatorcontrib><title>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</title><title>Mathematical modelling of natural phenomena</title><description>We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.</description><subject>37C05</subject><subject>37C29</subject><subject>37G25</subject><subject>37G35</subject><subject>bifurcations</subject><subject>homoclinic and heteroclinic orbits</subject><subject>saddle-focus</subject><subject>strange attractors</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkF1LwzAUhoMoOHSX3vcPxJ0kbZpcbtNNpbCbiVcS0jRxcW0zkgrqr7fDr3PzwuHh5eVB6IrANYGCzLquP8woECYKKE7QhJQcMCdATtEEZMlwwXJxjqYpvcJ4jOQMYIKeN322bkOt22zh3Vs0evChT1lw2XYXrcWN72yfxt9I3HjnbOhCPOx86lJWWd34_iUbQlaFaPtP3Pq9zebDELUZQkyX6MzpNtnpT16gx9XtdnmHq836fjmvsBl3DLjMDRFEMs61lFALTm3Nc2gMl7ShvCiFFKCFkdrlNXWEGisoB2loLoCBZRcIf_eaGFKK1qlD9J2OH4qAOupRRz3qV88_79Ng3_9gHfeKl6wslIAnVQgKq4WQ6oF9AYwTZ0E</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Gonchenko, S.V.</creator><creator>Ovsyannikov, I.I.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</title><author>Gonchenko, S.V. ; Ovsyannikov, I.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>37C05</topic><topic>37C29</topic><topic>37G25</topic><topic>37G35</topic><topic>bifurcations</topic><topic>homoclinic and heteroclinic orbits</topic><topic>saddle-focus</topic><topic>strange attractors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonchenko, S.V.</creatorcontrib><creatorcontrib>Ovsyannikov, I.I.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonchenko, S.V.</au><au>Ovsyannikov, I.I.</au><au>Zaks, M.</au><au>Vougalter, V.</au><au>Lerman, L.</au><au>Turaev, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2013</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>71</spage><epage>83</epage><pages>71-83</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>We study dynamics and bifurcations of three-dimensional diffeomorphisms with nontransversal heteroclinic cycles. We show that bifurcations under consideration lead to the birth of Lorenz-like attractors. They can be viewed as attractors in the Poincare map for periodically perturbed classical Lorenz attractors and hence they can allow for the existence of homoclinic tangencies and wild hyperbolic sets.</abstract><pub>EDP Sciences</pub><doi>10.1051/mmnp/20138505</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0973-5348 |
ispartof | Mathematical modelling of natural phenomena, 2013, Vol.8 (5), p.71-83 |
issn | 0973-5348 1760-6101 |
language | eng |
recordid | cdi_crossref_primary_10_1051_mmnp_20138505 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | 37C05 37C29 37G25 37G35 bifurcations homoclinic and heteroclinic orbits saddle-focus strange attractors |
title | On Global Bifurcations of Three-dimensional Diffeomorphisms Leading to Lorenz-like Attractors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Global%20Bifurcations%20of%20Three-dimensional%20Diffeomorphisms%20Leading%20to%20Lorenz-like%20Attractors&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Gonchenko,%20S.V.&rft.date=2013&rft.volume=8&rft.issue=5&rft.spage=71&rft.epage=83&rft.pages=71-83&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/20138505&rft_dat=%3Cistex_cross%3Eark_67375_80W_5820FB89_J%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-74c1819366a990b862eb640dc692d26578980a8c9af4b2f12ce82609c248030e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |