Loading…

On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation

Building on earlier work, we have given in [29] a proof of existence of Abrikosov vortex lattices in the Ginzburg-Landau model of superconductivity and shown that the triangular lattice gives the lowest energy per lattice cell. After [29] was published, we realized that it proves a stronger result t...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical modelling of natural phenomena 2013, Vol.8 (5), p.190-205
Main Authors: Tzaneteas, T., Sigal, I.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2292-1d81d804bea23357b7ea8433824c2b28c6600586cf94171c57e2e7292b0912693
cites cdi_FETCH-LOGICAL-c2292-1d81d804bea23357b7ea8433824c2b28c6600586cf94171c57e2e7292b0912693
container_end_page 205
container_issue 5
container_start_page 190
container_title Mathematical modelling of natural phenomena
container_volume 8
creator Tzaneteas, T.
Sigal, I.M.
description Building on earlier work, we have given in [29] a proof of existence of Abrikosov vortex lattices in the Ginzburg-Landau model of superconductivity and shown that the triangular lattice gives the lowest energy per lattice cell. After [29] was published, we realized that it proves a stronger result than was stated there. This result is recorded in the present paper. The proofs remain the same as in [29], apart from some streamlining.
doi_str_mv 10.1051/mmnp/20138512
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1051_mmnp_20138512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_80W_C0PRWFPT_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2292-1d81d804bea23357b7ea8433824c2b28c6600586cf94171c57e2e7292b0912693</originalsourceid><addsrcrecordid>eNpFj11LwzAUhoMoOOYuvc8fiDsnaT56I8yxTaGwoZNdhjRLtW5rZ9OK-uvd8Ovwwrl53hceQi4RrhAkDne7aj_kgMJI5Cekh1oBUwh4SnqQasGkSMw5GcT4AocTmAiAHrmeV3SUN-WmjvUbzVzblj7Qh3rbtWVdRVoXtH0OdFZWn3nXPLHMVWvX0clr547ABTkr3DaGwc_vk8fpZDm-Zdl8djceZcxznnKGa3MIJHlwXAipcx2cSYQwPPE858YrBSCN8kWaoEYvdeBBH5o5pMhVKvqEfe_6po6xCYXdN-XONR8WwR797dHf_vr_82Vsw_sf7JqNVVpoaQ2s7BgW96vpYmlvxBf1S1tU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tzaneteas, T. ; Sigal, I.M.</creator><contributor>Zaks, M. ; Vougalter, V. ; Lerman, L. ; Turaev, D.</contributor><creatorcontrib>Tzaneteas, T. ; Sigal, I.M. ; Zaks, M. ; Vougalter, V. ; Lerman, L. ; Turaev, D.</creatorcontrib><description>Building on earlier work, we have given in [29] a proof of existence of Abrikosov vortex lattices in the Ginzburg-Landau model of superconductivity and shown that the triangular lattice gives the lowest energy per lattice cell. After [29] was published, we realized that it proves a stronger result than was stated there. This result is recorded in the present paper. The proofs remain the same as in [29], apart from some streamlining.</description><identifier>ISSN: 0973-5348</identifier><identifier>EISSN: 1760-6101</identifier><identifier>DOI: 10.1051/mmnp/20138512</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>35B32 ; 35Q56 ; Abrikosov vortex lattices ; bifurcation ; Ginzburg-Landau equations ; magnetic vortices ; superconductivity</subject><ispartof>Mathematical modelling of natural phenomena, 2013, Vol.8 (5), p.190-205</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2292-1d81d804bea23357b7ea8433824c2b28c6600586cf94171c57e2e7292b0912693</citedby><cites>FETCH-LOGICAL-c2292-1d81d804bea23357b7ea8433824c2b28c6600586cf94171c57e2e7292b0912693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Zaks, M.</contributor><contributor>Vougalter, V.</contributor><contributor>Lerman, L.</contributor><contributor>Turaev, D.</contributor><creatorcontrib>Tzaneteas, T.</creatorcontrib><creatorcontrib>Sigal, I.M.</creatorcontrib><title>On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation</title><title>Mathematical modelling of natural phenomena</title><description>Building on earlier work, we have given in [29] a proof of existence of Abrikosov vortex lattices in the Ginzburg-Landau model of superconductivity and shown that the triangular lattice gives the lowest energy per lattice cell. After [29] was published, we realized that it proves a stronger result than was stated there. This result is recorded in the present paper. The proofs remain the same as in [29], apart from some streamlining.</description><subject>35B32</subject><subject>35Q56</subject><subject>Abrikosov vortex lattices</subject><subject>bifurcation</subject><subject>Ginzburg-Landau equations</subject><subject>magnetic vortices</subject><subject>superconductivity</subject><issn>0973-5348</issn><issn>1760-6101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFj11LwzAUhoMoOOYuvc8fiDsnaT56I8yxTaGwoZNdhjRLtW5rZ9OK-uvd8Ovwwrl53hceQi4RrhAkDne7aj_kgMJI5Cekh1oBUwh4SnqQasGkSMw5GcT4AocTmAiAHrmeV3SUN-WmjvUbzVzblj7Qh3rbtWVdRVoXtH0OdFZWn3nXPLHMVWvX0clr547ABTkr3DaGwc_vk8fpZDm-Zdl8djceZcxznnKGa3MIJHlwXAipcx2cSYQwPPE858YrBSCN8kWaoEYvdeBBH5o5pMhVKvqEfe_6po6xCYXdN-XONR8WwR797dHf_vr_82Vsw_sf7JqNVVpoaQ2s7BgW96vpYmlvxBf1S1tU</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Tzaneteas, T.</creator><creator>Sigal, I.M.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation</title><author>Tzaneteas, T. ; Sigal, I.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2292-1d81d804bea23357b7ea8433824c2b28c6600586cf94171c57e2e7292b0912693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>35B32</topic><topic>35Q56</topic><topic>Abrikosov vortex lattices</topic><topic>bifurcation</topic><topic>Ginzburg-Landau equations</topic><topic>magnetic vortices</topic><topic>superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzaneteas, T.</creatorcontrib><creatorcontrib>Sigal, I.M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematical modelling of natural phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzaneteas, T.</au><au>Sigal, I.M.</au><au>Zaks, M.</au><au>Vougalter, V.</au><au>Lerman, L.</au><au>Turaev, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation</atitle><jtitle>Mathematical modelling of natural phenomena</jtitle><date>2013</date><risdate>2013</risdate><volume>8</volume><issue>5</issue><spage>190</spage><epage>205</epage><pages>190-205</pages><issn>0973-5348</issn><eissn>1760-6101</eissn><abstract>Building on earlier work, we have given in [29] a proof of existence of Abrikosov vortex lattices in the Ginzburg-Landau model of superconductivity and shown that the triangular lattice gives the lowest energy per lattice cell. After [29] was published, we realized that it proves a stronger result than was stated there. This result is recorded in the present paper. The proofs remain the same as in [29], apart from some streamlining.</abstract><pub>EDP Sciences</pub><doi>10.1051/mmnp/20138512</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0973-5348
ispartof Mathematical modelling of natural phenomena, 2013, Vol.8 (5), p.190-205
issn 0973-5348
1760-6101
language eng
recordid cdi_crossref_primary_10_1051_mmnp_20138512
source EZB-FREE-00999 freely available EZB journals
subjects 35B32
35Q56
Abrikosov vortex lattices
bifurcation
Ginzburg-Landau equations
magnetic vortices
superconductivity
title On Abrikosov Lattice Solutions of the Ginzburg-Landau Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Abrikosov%20Lattice%20Solutions%20of%20the%20Ginzburg-Landau%20Equation&rft.jtitle=Mathematical%20modelling%20of%20natural%20phenomena&rft.au=Tzaneteas,%20T.&rft.date=2013&rft.volume=8&rft.issue=5&rft.spage=190&rft.epage=205&rft.pages=190-205&rft.issn=0973-5348&rft.eissn=1760-6101&rft_id=info:doi/10.1051/mmnp/20138512&rft_dat=%3Cistex_cross%3Eark_67375_80W_C0PRWFPT_B%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2292-1d81d804bea23357b7ea8433824c2b28c6600586cf94171c57e2e7292b0912693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true