Loading…
A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties
Increasing cross-linking has been shown in vitro and in vivo to improve markedly the wear resistance of ultra-high-molecular-weight polyethylene (UHMWPE). The reduction in the mechanical properties of polyethylene under certain methods used to produce cross-linking has been a concern, however. These...
Saved in:
Published in: | The Journal of arthroplasty 2001-02, Vol.16 (2), p.149-160 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Increasing cross-linking has been shown in vitro and in vivo to improve markedly the wear resistance of ultra-high-molecular-weight polyethylene (UHMWPE). The reduction in the mechanical properties of polyethylene under certain methods used to produce cross-linking has been a concern, however. These reductions are known to result from the processes used to increase the cross-link density and could affect the device performance in vivo. We present a novel method of increasing the cross-link density of UHMWPE in which UHMWPE is irradiated in air at an elevated temperature with a high-dose-rate electron beam and subsequently is melt-annealed. This treatment improves markedly the wear resistance of the polymer as tested in a hip simulator, while maintaining the mechanical properties of the material within national and international standards. This method leads to the absence of detectable free radicals in the polymer and, as a result, excellent resistance to oxidation of the polymer. |
---|---|
ISSN: | 0883-5403 1532-8406 |
DOI: | 10.1054/arth.2001.20540 |