Loading…

The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry

Abstract The exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i....

Full description

Saved in:
Bibliographic Details
Published in:Synlett 2022-06, Vol.33 (9), p.851-862
Main Authors: O’Neill, Robert T., Boulatov, Roman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c268t-147262ce44be1bcb0b72408dd9fef5eb46bc0620e1f5019cfa0d527f38c262363
cites cdi_FETCH-LOGICAL-c268t-147262ce44be1bcb0b72408dd9fef5eb46bc0620e1f5019cfa0d527f38c262363
container_end_page 862
container_issue 9
container_start_page 851
container_title Synlett
container_volume 33
creator O’Neill, Robert T.
Boulatov, Roman
description Abstract The exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.
doi_str_mv 10.1055/a-1710-5656
format article
fullrecord <record><control><sourceid>thieme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1055_a_1710_5656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1055_a_1710_5656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-147262ce44be1bcb0b72408dd9fef5eb46bc0620e1f5019cfa0d527f38c262363</originalsourceid><addsrcrecordid>eNptkMFLwzAchYMoOKcn_4GclWqSJml7lOJU2FBwuwklTX6xHW0iSXrYf-_KPHp6l-89Hh9Ct5Q8UCLEo8poQUkmpJBnaEF5XmSMVPIcLUiVy0wwyi_RVYx7QigvK7JAX9sOcO1dCn07pd67iL3FG29gwJ9pMj1EbH3Aq8kZNYJLasA7ZyDEpJzp3feMf_jhMELAG9Cdcl53MPYxhcM1urBqiHDzl0u0Wz1v69ds_f7yVj-tM81kmTLKCyaZBs5boK1uSVswTkpjKgtWQMtlq4lkBKgVhFbaKmIEK2xeHvssl_kS3Z92dfAxBrDNT-hHFQ4NJc0splHNLKaZxRzpuxOduh5GaPZ-Cu5471_4F6foZJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry</title><source>Thieme - Connect here FIRST to enable access</source><creator>O’Neill, Robert T. ; Boulatov, Roman</creator><creatorcontrib>O’Neill, Robert T. ; Boulatov, Roman</creatorcontrib><description>Abstract The exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.</description><identifier>ISSN: 0936-5214</identifier><identifier>EISSN: 1437-2096</identifier><identifier>DOI: 10.1055/a-1710-5656</identifier><language>eng</language><publisher>Rüdigerstraße 14, 70469 Stuttgart, Germany: Georg Thieme Verlag KG</publisher><subject>account</subject><ispartof>Synlett, 2022-06, Vol.33 (9), p.851-862</ispartof><rights>Thieme. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-147262ce44be1bcb0b72408dd9fef5eb46bc0620e1f5019cfa0d527f38c262363</citedby><cites>FETCH-LOGICAL-c268t-147262ce44be1bcb0b72408dd9fef5eb46bc0620e1f5019cfa0d527f38c262363</cites><orcidid>0000-0002-4348-7635 ; 0000-0002-7601-4279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.thieme-connect.de/products/ejournals/pdf/10.1055/a-1710-5656.pdf$$EPDF$$P50$$Gthieme$$H</linktopdf><linktohtml>$$Uhttps://www.thieme-connect.de/products/ejournals/html/10.1055/a-1710-5656$$EHTML$$P50$$Gthieme$$H</linktohtml><link.rule.ids>314,776,780,3004,3005,27901,27902,54534,54535</link.rule.ids></links><search><creatorcontrib>O’Neill, Robert T.</creatorcontrib><creatorcontrib>Boulatov, Roman</creatorcontrib><title>The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry</title><title>Synlett</title><addtitle>Synlett</addtitle><description>Abstract The exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.</description><subject>account</subject><issn>0936-5214</issn><issn>1437-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAchYMoOKcn_4GclWqSJml7lOJU2FBwuwklTX6xHW0iSXrYf-_KPHp6l-89Hh9Ct5Q8UCLEo8poQUkmpJBnaEF5XmSMVPIcLUiVy0wwyi_RVYx7QigvK7JAX9sOcO1dCn07pd67iL3FG29gwJ9pMj1EbH3Aq8kZNYJLasA7ZyDEpJzp3feMf_jhMELAG9Cdcl53MPYxhcM1urBqiHDzl0u0Wz1v69ds_f7yVj-tM81kmTLKCyaZBs5boK1uSVswTkpjKgtWQMtlq4lkBKgVhFbaKmIEK2xeHvssl_kS3Z92dfAxBrDNT-hHFQ4NJc0splHNLKaZxRzpuxOduh5GaPZ-Cu5471_4F6foZJk</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>O’Neill, Robert T.</creator><creator>Boulatov, Roman</creator><general>Georg Thieme Verlag KG</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4348-7635</orcidid><orcidid>https://orcid.org/0000-0002-7601-4279</orcidid></search><sort><creationdate>20220601</creationdate><title>The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry</title><author>O’Neill, Robert T. ; Boulatov, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-147262ce44be1bcb0b72408dd9fef5eb46bc0620e1f5019cfa0d527f38c262363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>account</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Neill, Robert T.</creatorcontrib><creatorcontrib>Boulatov, Roman</creatorcontrib><collection>CrossRef</collection><jtitle>Synlett</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Neill, Robert T.</au><au>Boulatov, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry</atitle><jtitle>Synlett</jtitle><addtitle>Synlett</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>33</volume><issue>9</issue><spage>851</spage><epage>862</epage><pages>851-862</pages><issn>0936-5214</issn><eissn>1437-2096</eissn><abstract>Abstract The exciting field of polymer mechanochemistry has made great empirical progress in discovering reactions in which a stretching force accelerates scission of strained bonds using single molecule force spectroscopy and ultrasonication experiments. Understanding why these reactions happen, i.e., the fundamental physical processes that govern coupling of macroscopic motion to chemical reactions, as well as discovering other patterns of mechanochemical reactivity require complementary techniques, which permit a much more detailed characterization of reaction mechanisms and the distribution of force in reacting molecules than are achievable in SMFS or ultrasonication. A molecular force probe allows the specific pattern of molecular strain that is responsible for localized reactions in stretched polymers to be reproduced accurately in non-polymeric substrates using molecular design rather than atomistically intractable collective motions of millions of atoms comprising macroscopic motion. In this review, we highlight the necessary features of a useful molecular force probe and describe their realization in stiff stilbene macrocycles. We describe how studying these macrocycles using classical tools of physical organic chemistry has allowed detailed characterizations of mechanochemical reactivity, explain some of the most unexpected insights enabled by these probes, and speculate how they may guide the next stage of mechanochemistry.</abstract><cop>Rüdigerstraße 14, 70469 Stuttgart, Germany</cop><pub>Georg Thieme Verlag KG</pub><doi>10.1055/a-1710-5656</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4348-7635</orcidid><orcidid>https://orcid.org/0000-0002-7601-4279</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0936-5214
ispartof Synlett, 2022-06, Vol.33 (9), p.851-862
issn 0936-5214
1437-2096
language eng
recordid cdi_crossref_primary_10_1055_a_1710_5656
source Thieme - Connect here FIRST to enable access
subjects account
title The Contributions of Model Studies for Fundamental Understanding of Polymer Mechanochemistry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-thieme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Contributions%20of%20Model%20Studies%20for%20Fundamental%20Understanding%20of%20Polymer%20Mechanochemistry&rft.jtitle=Synlett&rft.au=O%E2%80%99Neill,%20Robert%20T.&rft.date=2022-06-01&rft.volume=33&rft.issue=9&rft.spage=851&rft.epage=862&rft.pages=851-862&rft.issn=0936-5214&rft.eissn=1437-2096&rft_id=info:doi/10.1055/a-1710-5656&rft_dat=%3Cthieme_cross%3E10_1055_a_1710_5656%3C/thieme_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-147262ce44be1bcb0b72408dd9fef5eb46bc0620e1f5019cfa0d527f38c262363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true