Loading…

Containment of socially optimal policies in multiple-facility Markovian queueing systems

We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline. Customers arriving in the system can be either rejected or sent to one of the N...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Operational Research Society 2016-04, Vol.67 (4), p.629-643
Main Authors: Shone, Rob, Knight, Vincent A, Harper, Paul R, Williams, Janet E, Minty, John
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-8b9f28261193e233f03f8baddae02e9bbd30ec7e0fa179c25274a1c3a9f33b193
cites cdi_FETCH-LOGICAL-c440t-8b9f28261193e233f03f8baddae02e9bbd30ec7e0fa179c25274a1c3a9f33b193
container_end_page 643
container_issue 4
container_start_page 629
container_title The Journal of the Operational Research Society
container_volume 67
creator Shone, Rob
Knight, Vincent A
Harper, Paul R
Williams, Janet E
Minty, John
description We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline. Customers arriving in the system can be either rejected or sent to one of the N facilities. Two different types of control policies are considered, which we refer to as 'selfishly optimal' and 'socially optimal'. We prove the equivalence of two different Markov Decision Process formulations, and then show that classical M/M/1 queue results from the early literature on behavioural queueing theory can be generalized to multiple dimensions in an elegant way. In particular, the state space of the continuous-time Markov process induced by a socially optimal policy is contained within that of the selfishly optimal policy. We also show that this result holds when customers are divided into an arbitrary number of heterogeneous classes, provided that the service rates remain non-discriminatory.
doi_str_mv 10.1057/jors.2015.98
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1057_jors_2015_98</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43830687</jstor_id><sourcerecordid>43830687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-8b9f28261193e233f03f8baddae02e9bbd30ec7e0fa179c25274a1c3a9f33b193</originalsourceid><addsrcrecordid>eNptkE1r3DAQhkVJoJuPW64BQa7xdmTZlnQMS5IWUnpJoTcha6VFG1lyJG2C_328uJQecprDPPPMzIvQFYE1gZZ928eU1zWQdi34F7QiDesqQTs4QSsgHVRtx-uv6CznPQAIIGKF_mxiKMqFwYSCo8U5aqe8n3AcixuUx2P0TjuTsQt4OPjiRm8qq7Tzrkz4p0ov8c2pgF8P5mBc2OE85WKGfIFOrfLZXP6t5-j3w_3z5nv19Ovxx-buqdJNA6XivbA1rztCBDU1pRao5b3abpWB2oi-31IwmhmwijCh67ZmjSKaKmEp7eehc3SzeMcU5xtykft4SGFeKQljLYiWd81M3S6UTjHnZKwc0_xemiQBecxOHrOTx-yk4DNeLXiesbAz6T_p5_z1wu9ziemfu6GcQsfZ3GdL3wUb06DeY_JbWdTkY7JJBe2ypJ-aPwCHKpBS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775095864</pqid></control><display><type>article</type><title>Containment of socially optimal policies in multiple-facility Markovian queueing systems</title><source>ABI/INFORM global</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Shone, Rob ; Knight, Vincent A ; Harper, Paul R ; Williams, Janet E ; Minty, John</creator><creatorcontrib>Shone, Rob ; Knight, Vincent A ; Harper, Paul R ; Williams, Janet E ; Minty, John</creatorcontrib><description>We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline. Customers arriving in the system can be either rejected or sent to one of the N facilities. Two different types of control policies are considered, which we refer to as 'selfishly optimal' and 'socially optimal'. We prove the equivalence of two different Markov Decision Process formulations, and then show that classical M/M/1 queue results from the early literature on behavioural queueing theory can be generalized to multiple dimensions in an elegant way. In particular, the state space of the continuous-time Markov process induced by a socially optimal policy is contained within that of the selfishly optimal policy. We also show that this result holds when customers are divided into an arbitrary number of heterogeneous classes, provided that the service rates remain non-discriminatory.</description><identifier>ISSN: 0160-5682</identifier><identifier>EISSN: 1476-9360</identifier><identifier>DOI: 10.1057/jors.2015.98</identifier><identifier>CODEN: OPRQAK</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Business and Management ; Carrying costs ; Costs ; Customer services ; Decision making ; Dynamic programming ; equilibrium strategies ; General Paper ; Management ; Markov chains ; Markov Decision Processes ; Markov processes ; Mathematical vectors ; Open ; Operations research ; Operations Research/Decision Theory ; Optimal policy ; optimal strategies ; Optimization ; Queueing theory ; queues with balking ; Queuing ; Servers ; Social classes ; Steady states ; Studies ; Systems stability ; Unobservables</subject><ispartof>The Journal of the Operational Research Society, 2016-04, Vol.67 (4), p.629-643</ispartof><rights>Copyright © 2015, The Author(s) 2015</rights><rights>Copyright © 2016 Operational Research Society Ltd</rights><rights>The Author(s) 2015</rights><rights>Operational Research Society Ltd. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-8b9f28261193e233f03f8baddae02e9bbd30ec7e0fa179c25274a1c3a9f33b193</citedby><cites>FETCH-LOGICAL-c440t-8b9f28261193e233f03f8baddae02e9bbd30ec7e0fa179c25274a1c3a9f33b193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1775095864/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1775095864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,58213,58446,74638</link.rule.ids></links><search><creatorcontrib>Shone, Rob</creatorcontrib><creatorcontrib>Knight, Vincent A</creatorcontrib><creatorcontrib>Harper, Paul R</creatorcontrib><creatorcontrib>Williams, Janet E</creatorcontrib><creatorcontrib>Minty, John</creatorcontrib><title>Containment of socially optimal policies in multiple-facility Markovian queueing systems</title><title>The Journal of the Operational Research Society</title><addtitle>J Oper Res Soc</addtitle><description>We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline. Customers arriving in the system can be either rejected or sent to one of the N facilities. Two different types of control policies are considered, which we refer to as 'selfishly optimal' and 'socially optimal'. We prove the equivalence of two different Markov Decision Process formulations, and then show that classical M/M/1 queue results from the early literature on behavioural queueing theory can be generalized to multiple dimensions in an elegant way. In particular, the state space of the continuous-time Markov process induced by a socially optimal policy is contained within that of the selfishly optimal policy. We also show that this result holds when customers are divided into an arbitrary number of heterogeneous classes, provided that the service rates remain non-discriminatory.</description><subject>Business and Management</subject><subject>Carrying costs</subject><subject>Costs</subject><subject>Customer services</subject><subject>Decision making</subject><subject>Dynamic programming</subject><subject>equilibrium strategies</subject><subject>General Paper</subject><subject>Management</subject><subject>Markov chains</subject><subject>Markov Decision Processes</subject><subject>Markov processes</subject><subject>Mathematical vectors</subject><subject>Open</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal policy</subject><subject>optimal strategies</subject><subject>Optimization</subject><subject>Queueing theory</subject><subject>queues with balking</subject><subject>Queuing</subject><subject>Servers</subject><subject>Social classes</subject><subject>Steady states</subject><subject>Studies</subject><subject>Systems stability</subject><subject>Unobservables</subject><issn>0160-5682</issn><issn>1476-9360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>M0C</sourceid><recordid>eNptkE1r3DAQhkVJoJuPW64BQa7xdmTZlnQMS5IWUnpJoTcha6VFG1lyJG2C_328uJQecprDPPPMzIvQFYE1gZZ928eU1zWQdi34F7QiDesqQTs4QSsgHVRtx-uv6CznPQAIIGKF_mxiKMqFwYSCo8U5aqe8n3AcixuUx2P0TjuTsQt4OPjiRm8qq7Tzrkz4p0ov8c2pgF8P5mBc2OE85WKGfIFOrfLZXP6t5-j3w_3z5nv19Ovxx-buqdJNA6XivbA1rztCBDU1pRao5b3abpWB2oi-31IwmhmwijCh67ZmjSKaKmEp7eehc3SzeMcU5xtykft4SGFeKQljLYiWd81M3S6UTjHnZKwc0_xemiQBecxOHrOTx-yk4DNeLXiesbAz6T_p5_z1wu9ziemfu6GcQsfZ3GdL3wUb06DeY_JbWdTkY7JJBe2ypJ-aPwCHKpBS</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Shone, Rob</creator><creator>Knight, Vincent A</creator><creator>Harper, Paul R</creator><creator>Williams, Janet E</creator><creator>Minty, John</creator><general>Taylor &amp; Francis</general><general>Palgrave Macmillan</general><general>Palgrave Macmillan UK</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20160401</creationdate><title>Containment of socially optimal policies in multiple-facility Markovian queueing systems</title><author>Shone, Rob ; Knight, Vincent A ; Harper, Paul R ; Williams, Janet E ; Minty, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-8b9f28261193e233f03f8baddae02e9bbd30ec7e0fa179c25274a1c3a9f33b193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Business and Management</topic><topic>Carrying costs</topic><topic>Costs</topic><topic>Customer services</topic><topic>Decision making</topic><topic>Dynamic programming</topic><topic>equilibrium strategies</topic><topic>General Paper</topic><topic>Management</topic><topic>Markov chains</topic><topic>Markov Decision Processes</topic><topic>Markov processes</topic><topic>Mathematical vectors</topic><topic>Open</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal policy</topic><topic>optimal strategies</topic><topic>Optimization</topic><topic>Queueing theory</topic><topic>queues with balking</topic><topic>Queuing</topic><topic>Servers</topic><topic>Social classes</topic><topic>Steady states</topic><topic>Studies</topic><topic>Systems stability</topic><topic>Unobservables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shone, Rob</creatorcontrib><creatorcontrib>Knight, Vincent A</creatorcontrib><creatorcontrib>Harper, Paul R</creatorcontrib><creatorcontrib>Williams, Janet E</creatorcontrib><creatorcontrib>Minty, John</creatorcontrib><collection>Taylor &amp; Francis_OA刊</collection><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>The Journal of the Operational Research Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shone, Rob</au><au>Knight, Vincent A</au><au>Harper, Paul R</au><au>Williams, Janet E</au><au>Minty, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Containment of socially optimal policies in multiple-facility Markovian queueing systems</atitle><jtitle>The Journal of the Operational Research Society</jtitle><stitle>J Oper Res Soc</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>67</volume><issue>4</issue><spage>629</spage><epage>643</epage><pages>629-643</pages><issn>0160-5682</issn><eissn>1476-9360</eissn><coden>OPRQAK</coden><abstract>We consider a Markovian queueing system with N heterogeneous service facilities, each of which has multiple servers available, linear holding costs, a fixed value of service and a first-come-first-serve queue discipline. Customers arriving in the system can be either rejected or sent to one of the N facilities. Two different types of control policies are considered, which we refer to as 'selfishly optimal' and 'socially optimal'. We prove the equivalence of two different Markov Decision Process formulations, and then show that classical M/M/1 queue results from the early literature on behavioural queueing theory can be generalized to multiple dimensions in an elegant way. In particular, the state space of the continuous-time Markov process induced by a socially optimal policy is contained within that of the selfishly optimal policy. We also show that this result holds when customers are divided into an arbitrary number of heterogeneous classes, provided that the service rates remain non-discriminatory.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1057/jors.2015.98</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0160-5682
ispartof The Journal of the Operational Research Society, 2016-04, Vol.67 (4), p.629-643
issn 0160-5682
1476-9360
language eng
recordid cdi_crossref_primary_10_1057_jors_2015_98
source ABI/INFORM global; JSTOR Archival Journals and Primary Sources Collection; Taylor and Francis Science and Technology Collection
subjects Business and Management
Carrying costs
Costs
Customer services
Decision making
Dynamic programming
equilibrium strategies
General Paper
Management
Markov chains
Markov Decision Processes
Markov processes
Mathematical vectors
Open
Operations research
Operations Research/Decision Theory
Optimal policy
optimal strategies
Optimization
Queueing theory
queues with balking
Queuing
Servers
Social classes
Steady states
Studies
Systems stability
Unobservables
title Containment of socially optimal policies in multiple-facility Markovian queueing systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Containment%20of%20socially%20optimal%20policies%20in%20multiple-facility%20Markovian%20queueing%20systems&rft.jtitle=The%20Journal%20of%20the%20Operational%20Research%20Society&rft.au=Shone,%20Rob&rft.date=2016-04-01&rft.volume=67&rft.issue=4&rft.spage=629&rft.epage=643&rft.pages=629-643&rft.issn=0160-5682&rft.eissn=1476-9360&rft.coden=OPRQAK&rft_id=info:doi/10.1057/jors.2015.98&rft_dat=%3Cjstor_cross%3E43830687%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-8b9f28261193e233f03f8baddae02e9bbd30ec7e0fa179c25274a1c3a9f33b193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1775095864&rft_id=info:pmid/&rft_jstor_id=43830687&rfr_iscdi=true