Loading…
Linear Elastic Fracture Mechanics Pullout Analyses of Headed Anchors in Stressed Concrete
The results of research initiated in the early 1980s led to the replacement of plasticity-based design guidelines for the load-carrying capacity of headed anchors embedded in concrete with those developed using fracture mechanics. While provisions are available in the design codes that account for t...
Saved in:
Published in: | Journal of engineering mechanics 2010-06, Vol.136 (6), p.761-768 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The results of research initiated in the early 1980s led to the replacement of plasticity-based design guidelines for the load-carrying capacity of headed anchors embedded in concrete with those developed using fracture mechanics. While provisions are available in the design codes that account for the presence of tensile fields causing concrete cracking, no provisions are available for anchors embedded in prestressed concrete. This paper presents the results of linear elastic fracture mechanics (LEFM) analyses and of a preliminary experimental investigation of the progressive failure of headed anchors embedded in a concrete matrix under compressive or tensile prestress. The model predicts an increase (decrease) in load-carrying capacity and ductility with increasing compressive (tensile) prestress. It is shown that despite neglecting the dependence on size of concrete fracture toughness, LEFM predicts with remarkable accuracy the functional dependence of the ultimate capacity on prestress. |
---|---|
ISSN: | 0733-9399 1943-7889 |
DOI: | 10.1061/(ASCE)EM.1943-7889.0000120 |