Loading…
Molecular beam epitaxial growth of InAsSb strained layer superlattices. Can nature do it better ?
Molecular beam epitaxial growth of a normally homogeneous InAs0.5Sb0.5 alloy below 430 °C results in its coherent phase separation into platelets of two different alloy compositions with tetragonally distorted crystal lattices. This produces a ‘‘natural’’ strained layer superlattice (n-SLS) with cle...
Saved in:
Published in: | Applied physics letters 1991-12, Vol.59 (25), p.3324-3326 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molecular beam epitaxial growth of a normally homogeneous InAs0.5Sb0.5 alloy below 430 °C results in its coherent phase separation into platelets of two different alloy compositions with tetragonally distorted crystal lattices. This produces a ‘‘natural’’ strained layer superlattice (n-SLS) with clearly defined interfaces modulated in the [001] growth direction. A description of the n-SLS growth mode in InAsSb is outlined, and the optical response of a n-SLS structure, which extends to 12.5 μm−considerably further than that of a homogeneous InAs0.5Sb0.5 layer (8.9 μm)−is reported. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.105720 |