Loading…
Self-consistent scattering matrix calculation of the distribution function in semiconductor devices
The scattering matrix approach is a new technique for solving the Boltzmann equation in devices. We report a self-consistent application of the technique to realistic silicon devices exhibiting strong nonlocal effects. Simulation of a hot-electron, n-i-n diode demonstrates that the new technique eff...
Saved in:
Published in: | Applied physics letters 1992-06, Vol.60 (23), p.2908-2910 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The scattering matrix approach is a new technique for solving the Boltzmann equation in devices. We report a self-consistent application of the technique to realistic silicon devices exhibiting strong nonlocal effects. Simulation of a hot-electron, n-i-n diode demonstrates that the new technique efficiently and accurately reproduces Monte Carlo results without the statistical noise, allowing much tighter convergence with Poisson’s equation. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.106816 |