Loading…
Self-limiting oxidation for fabricating sub-5 nm silicon nanowires
The ability to control structural dimensions below 5 nm is essential for a systematic study of the optical and electrical properties of Si nanostructures. A combination of electron beam lithography, NF3 reactive ion etching, and dry thermal oxidation has been successfully implemented to yield 2-nm-w...
Saved in:
Published in: | Applied physics letters 1994-03, Vol.64 (11), p.1383-1385 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ability to control structural dimensions below 5 nm is essential for a systematic study of the optical and electrical properties of Si nanostructures. A combination of electron beam lithography, NF3 reactive ion etching, and dry thermal oxidation has been successfully implemented to yield 2-nm-wide Si nanowires with aspect ratio of more than 100 to 1. With a sideview transmission electron microscopy technique, the oxidation progression of Si nanowires was characterized over a range of temperature from 800 to 1200 °C. A previously reported self-limiting oxidation phenomenon was found to occur only for oxidation temperatures below 950 °C. A preliminary model suggests that increase in the activation energy of oxidant diffusivity in a highly stressed oxide may be the main mechanism for slowing down the oxidation rate in the self-limiting regime. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.111914 |