Loading…

Graded-composition buffer layers using digital AlGaAsSb alloys

We describe step-graded digital-alloy buffers using alternate layers of Al0.5Ga0.5As and Al0.5Ga0.5As0.65Sb0.35 grown on GaAs substrates by molecular beam epitaxy. The buffers consist of three sets of superlattices with AlGaAs/AlGaAsSb layer thicknesses of 7.7/2.3 nm, 5.4/4.6 nm, and 3.1/6.9 nm, res...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 1995-10, Vol.67 (16), p.2320-2322
Main Authors: Fritz, I. J., Dawson, L. R., Olsen, J. A., Howard, A. J.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe step-graded digital-alloy buffers using alternate layers of Al0.5Ga0.5As and Al0.5Ga0.5As0.65Sb0.35 grown on GaAs substrates by molecular beam epitaxy. The buffers consist of three sets of superlattices with AlGaAs/AlGaAsSb layer thicknesses of 7.7/2.3 nm, 5.4/4.6 nm, and 3.1/6.9 nm, respectively, terminating in a lattice constant equal to that of bulk In0.32Ga0.68As. Transmission electron micrographs show that most of the misfit-generated dislocations lie near the steps in pseudoalloy composition, and atomic force micrographs indicate a rms surface roughness of 3.6 nm. A 20.5-period lattice-matched InGaAs/InAlAs reflector stack grown on such a buffer has a peak reflectivity of 98% near 1.3 μm. These buffers provide potentially useful substrates for optoelectronic device applications near 1.3 μm using strained InGaAs active regions.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.114331