Loading…
High resolution photothermal imaging of high frequency phenomena using a visible charge coupled device camera associated with a multichannel lock-in scheme
We have developed a technique using a photothermal microscope from which we can make a thermal image of an electronic component working at a “high frequency” using a charge coupled device (CCD) camera and a multichannel lock-in scheme. To do this, we have created an electronic “stroboscope”: the fre...
Saved in:
Published in: | Review of scientific instruments 1999-09, Vol.70 (9), p.3603-3608 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have developed a technique using a photothermal microscope from which we can make a thermal image of an electronic component working at a “high frequency” using a charge coupled device (CCD) camera and a multichannel lock-in scheme. To do this, we have created an electronic “stroboscope”: the frequency F of the thermal signal induced by a high frequency electrical excitation and the frequency of the light
F+f
that illuminates the device are next to each other; the signal reflected at the surface of the device whose amplitude is proportional to the variation of reflectivity and hence to the variation of temperature and whose frequency is the blinking one f is analyzed by a visible CCD camera. Amplitude and phase images of the high frequency thermal phenomenon can then be made. Moreover, this technique presents a great advantage: the spatial resolution is better than 1 μm. The amplitude and phase images presented show, with a very good spatial resolution, Joule and Peltier heating of a polycrystalline silicon 2.5 kΩ resistor across which a sinusoidal current is forced. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.1149966 |