Loading…
Er/O and Er/F doping during molecular beam epitaxial growth of Si layers for efficient 1.54 μm light emission
Er, together with oxygen or fluorine as co-dopants, has been incorporated into Si during molecular beam epitaxial growth using co-evaporation of Si and Er containing compounds. The Er doping concentration using both Er2O3 and ErF3 can reach a level of ∼5×1019 cm−3 without precipitation, which is at...
Saved in:
Published in: | Applied physics letters 1997-06, Vol.70 (25), p.3383-3385 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Er, together with oxygen or fluorine as co-dopants, has been incorporated into Si during molecular beam epitaxial growth using co-evaporation of Si and Er containing compounds. The Er doping concentration using both Er2O3 and ErF3 can reach a level of ∼5×1019 cm−3 without precipitation, which is at least one order of magnitude higher than a previously reported solid solubility limit for Er in Si. Growth, structural, and luminescence characterization of these Er/O and Er/F doped Si samples are reported. In particular, 1.54 μm electroluminescence has been observed from Er/O doped Si layers at room temperature through hot electron impact excitation. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.119178 |