Loading…
The Schottky energy barrier dependence of charge injection in organic light-emitting diodes
We present device model calculations of the current–voltage (I–V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I–V characteristics are considered a...
Saved in:
Published in: | Applied physics letters 1998-04, Vol.72 (15), p.1863-1865 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present device model calculations of the current–voltage (I–V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I–V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I–V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.121208 |