Loading…
Transverse surface acoustic wave detection by scanning acoustic force microscopy
We present a scanning acoustic force microscope (SAFM) for the study of surface acoustic wave (SAW) phenomena on the submicron lateral scale. Until now, SAWs with in-plane oscillation components could only be studied effectively via nonvanishing out-of-plane oscillation contributions. By operating t...
Saved in:
Published in: | Applied physics letters 1998-08, Vol.73 (7), p.882-884 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a scanning acoustic force microscope (SAFM) for the study of surface acoustic wave (SAW) phenomena on the submicron lateral scale. Until now, SAWs with in-plane oscillation components could only be studied effectively via nonvanishing out-of-plane oscillation contributions. By operating the microscope in lateral force mode, where both bending and torsion of the cantilever are detected, additional amplitude-dependent signals are found, which are due to the interaction with purely in-plane polarized surface oscillations. To demonstrate the capabilities of this type of SAFM, Love waves were studied on the surface of layers deposited on ST-cut quartz with SAW propagation perpendicular to the crystal X-axis. The phase velocity of the wave as well as the amplitude of a standing wave field was measured and compared to calculated values. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.122026 |