Loading…

Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals

Spectral narrowing of photoluminescence (PL) and evolution of sharp emission lines upon optical excitation have been observed in opals made of SiO2 spheres infiltrated with conducting polymers such as OOPPV and MDDOPPV and also fluorescent dyes such as rhodamine 6G, NK-3483, and coumarin 120. Their...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 1999-05, Vol.74 (18), p.2590-2592
Main Authors: Yoshino, K., Tatsuhara, S., Kawagishi, Y., Ozaki, M., Zakhidov, A. A., Vardeny, Z. V.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spectral narrowing of photoluminescence (PL) and evolution of sharp emission lines upon optical excitation have been observed in opals made of SiO2 spheres infiltrated with conducting polymers such as OOPPV and MDDOPPV and also fluorescent dyes such as rhodamine 6G, NK-3483, and coumarin 120. Their emission properties are dependent on the sort of the opal and the solvents used for infiltration. With increasing optical excitation intensity, spectral narrowing and evolution of sharp lines have been observed in the green opal infiltrated with OOPPV, MDDOPPV, or rhodamine 6G but not in the infiltrated red and purple opals. With a solvent having a refractive index similar to that of SiO2, the evolution of the sharp emission lines is greatly suppressed and the lines exhibit a blueshift with decreasing refractive index. In NK-3483 and coumarin 120 which show red and purple PL, respectively, evolution of sharp lines is observed when they were infiltrated in red and purple opals, respectively, but not in other opals. These results are discussed in terms of amplified spontaneous emission and multimode lasing due to optical feedback in the opal matrix with a periodic structure.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.123907