Loading…

Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resists for nanolithography

We have explored the interaction of self-assembled monolayers of 1,1′-biphenyl-4-thiol (BPT) with low energy electrons. X-ray photoelectron, infrared, and near edge x-ray absorption fine structure spectroscopy showed that BPT forms well-ordered monolayers with the phenyl rings tilted ∼15° from the s...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 1999-10, Vol.75 (16), p.2401-2403
Main Authors: Geyer, W., Stadler, V., Eck, W., Zharnikov, M., Gölzhäuser, A., Grunze, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have explored the interaction of self-assembled monolayers of 1,1′-biphenyl-4-thiol (BPT) with low energy electrons. X-ray photoelectron, infrared, and near edge x-ray absorption fine structure spectroscopy showed that BPT forms well-ordered monolayers with the phenyl rings tilted ∼15° from the surface normal. The films were exposed to 50 eV electrons and changes were monitored in situ. Even after high (∼10 mC/cm2) exposures, the molecules maintain their preferred orientation and remain bonded on the gold substrate. An increased etching resistance and changes in the infrared spectra imply a crosslinking between neighboring phenyl groups, which suggests that BPT can be utilized as an ultrathin negative resist. This is demonstrated by the generation of patterns in the underlying gold.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.125027