Loading…

Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire

Influence of oxygen pressure on the epitaxy, surface morphology, and optoelectronic properties has been studied in the case of ZnO thin films grown on sapphire (0001) by pulsed-laser deposition. Results of Rutherford backscattering and ion channeling in conjunction with atomic force microscopy clear...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 1999-12, Vol.75 (25), p.3947-3949
Main Authors: Choopun, S., Vispute, R. D., Noch, W., Balsamo, A., Sharma, R. P., Venkatesan, T., Iliadis, A., Look, D. C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Influence of oxygen pressure on the epitaxy, surface morphology, and optoelectronic properties has been studied in the case of ZnO thin films grown on sapphire (0001) by pulsed-laser deposition. Results of Rutherford backscattering and ion channeling in conjunction with atomic force microscopy clearly indicate that the growth mode, degree of epitaxy, and the defect density strongly depend on the oxygen background pressure during growth. It is also found that the growth mode and the defects strongly influence the electron mobility, free-electron concentration, and the luminescence properties of the ZnO films. By tuning the oxygen pressure during the initial and the final growth stages, smooth and epitaxial ZnO films with high optical quality, high electron mobility, and low background carrier concentration have been obtained. The implication of these results towards the fabrication of superlattices and controlled n- and p-type doping is discussed.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.125503