Loading…
Hole and electron emission from InAs quantum dots
Carrier escape processes from self-organized InAs quantum dots QDs embedded in GaAs are investigated by time-resolved capacitance spectroscopy. Electron emission is found to be dominated by tunneling processes. In addition to tunneling from the ground state, we find thermally activated tunneling inv...
Saved in:
Published in: | Applied physics letters 2000-03, Vol.76 (12), p.1573-1575 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carrier escape processes from self-organized InAs quantum dots QDs embedded in GaAs are investigated by time-resolved capacitance spectroscopy. Electron emission is found to be dominated by tunneling processes. In addition to tunneling from the ground state, we find thermally activated tunneling involving excited QD states with an activation energy of 82 meV. For holes, the tunnel contribution is negligible and thermal activation from the QD ground state to the GaAs valence band with an activation energy of 164 meV dominates. Extrapolation to room temperature yields an emission time constant of 5 ps for holes, which is an order of magnitude larger than for electrons. The measured activation energies agree well with theoretically predicted QD levels. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.126099 |