Loading…

Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma

Separation of the effects of rf sources used for biasing the wafer and for sustaining the plasma is studied by measuring the space profiles of net excitation rate of Ar(3p5) for a two-frequency capacitively coupled plasma as a representation of a typical oxide etcher. Measurements were performed in...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2000-07, Vol.77 (4), p.489-491
Main Authors: Kitajima, T., Takeo, Y., Petrović, Z. Lj, Makabe, T.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Separation of the effects of rf sources used for biasing the wafer and for sustaining the plasma is studied by measuring the space profiles of net excitation rate of Ar(3p5) for a two-frequency capacitively coupled plasma as a representation of a typical oxide etcher. Measurements were performed in Ar and in CF4/Ar mixtures. For biasing supply operating at low frequency, 700 kHz, it was shown that the effect of the voltage becomes significantly smaller as the sustaining voltage is changed from high frequency, 13.56 MHz, to very high frequency (VHF), 100 MHz, and it even disappears for pulsed operation in mixtures. This is the result of the low dc self-bias at the VHF electrode that allows the high energy secondary electrons to leave the plasma without excessive contribution to ionization and dissociation.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.127020