Loading…

Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post- d main group elements: Application to PbH and PbO

Relativistic pseudopotentials (PPs) of the energy-consistent variety have been generated for the post-d group 13–15 elements, by adjustment to multiconfiguration Dirac–Hartree–Fock data based on the Dirac–Coulomb–Breit Hamiltonian. The outer-core (n−1)spd shells are explicitly treated together with...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2000-08, Vol.113 (7), p.2563-2569
Main Authors: Metz, Bernhard, Stoll, Hermann, Dolg, Michael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Relativistic pseudopotentials (PPs) of the energy-consistent variety have been generated for the post-d group 13–15 elements, by adjustment to multiconfiguration Dirac–Hartree–Fock data based on the Dirac–Coulomb–Breit Hamiltonian. The outer-core (n−1)spd shells are explicitly treated together with the nsp valence shell, with these PPs, and the implications of the small-core choice are discussed by comparison to a corresponding large-core PP, in the case of Pb. Results from valence ab initio one- and two-component calculations using both PPs are presented for the fine-structure splitting of the ns2np2 ground-state configuration of the Pb atom, and for spectroscopic constants of PbH (X 2Π1/2, 2Π3/2) and PbO (X 1Σ+). In addition, a combination of small-core and large-core PPs has been explored in spin-free-state shifted calculations for the above molecules.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.1305880