Loading…
Electrochemical carbon nanotube field-effect transistor
We explore the electric-field effect of carbon nanotubes (NTs) in electrolytes. Due to the large gate capacitance, Fermi energy (EF) shifts of order ±1 V can be induced, enabling to tune NTs from p to n-type. Consequently, large resistance changes are measured. At zero gate voltage, the NTs are hole...
Saved in:
Published in: | Applied physics letters 2001-02, Vol.78 (9), p.1291-1293 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explore the electric-field effect of carbon nanotubes (NTs) in electrolytes. Due to the large gate capacitance, Fermi energy (EF) shifts of order ±1 V can be induced, enabling to tune NTs from p to n-type. Consequently, large resistance changes are measured. At zero gate voltage, the NTs are hole-doped in air with |EF|≈0.3–0.5 eV, corresponding to a doping level of ≈1013 cm−2. Hole-doping increases in the electrolyte. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1350427 |