Loading…
Heterojunction wavelength-tailorable far-infrared photodetectors with response out to 70 μm
Results are presented on the performance of a heterojunction interfacial workfunction internal photoemission (HEIWIP) wavelength-tailorable detector. The detection mechanism is based on free-carrier absorption in the heavily doped emitter regions and internal emission across a workfunction barrier c...
Saved in:
Published in: | Applied physics letters 2001-04, Vol.78 (15), p.2241-2243 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Results are presented on the performance of a heterojunction interfacial workfunction internal photoemission (HEIWIP) wavelength-tailorable detector. The detection mechanism is based on free-carrier absorption in the heavily doped emitter regions and internal emission across a workfunction barrier caused by the band gap offset at the heterojunction. The HEIWIP detectors have the high responsivity of free-carrier absorption detectors and the low dark current of quantum well infrared photodector type detectors. For a 70±2 cutoff wavelength detector, a responsivity of 11 A/W and a D*=1×1013 cmHz/W with a photocurrent efficiency of 24% was observed at 20 μm. From the 300 K background photocurrent, the background limited performance (BLIP) temperature for this HEIWIP detector was estimated to be 15 K. This HEIWIP detector provides an exciting approach to far-infrared detection. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1361283 |