Loading…
Homotopy arguments for quantized Hall conductivity
Using the strong localization bounds obtained by the Aizenman–Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling par...
Saved in:
Published in: | Journal of mathematical physics 2001-08, Vol.42 (8), p.3439-3444 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-ff48c9619918a62fc1f9c96ac7f3962496d925437fe893ff6550349f2a62afb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-ff48c9619918a62fc1f9c96ac7f3962496d925437fe893ff6550349f2a62afb23 |
container_end_page | 3444 |
container_issue | 8 |
container_start_page | 3439 |
container_title | Journal of mathematical physics |
container_volume | 42 |
creator | Richter, T. Schulz-Baldes, H. |
description | Using the strong localization bounds obtained by the Aizenman–Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram. |
doi_str_mv | 10.1063/1.1379070 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1379070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ff48c9619918a62fc1f9c96ac7f3962496d925437fe893ff6550349f2a62afb23</originalsourceid><addsrcrecordid>eNqdz0FLxDAUBOAgCtbVg_-gV4WueUmaJkdZ1AoLXvQcYtonlbapSbpQf70ru-Dd0zDwMTCEXANdA5X8DtbAK00rekIyoEoXlSzVKckoZaxgQqlzchHjJ6UASoiMsNoPPvlpyW34mId2TDFHH_Kv2Y6p-26bvLZ9nzs_NrNL3a5LyyU5Q9vH9uqYK_L2-PC6qYvty9Pz5n5bOC55KhCFclqC1qCsZOgA9b5bVyHXkgktG81KwStsleaIsiwpFxrZHlt8Z3xFbg67LvgYQ4tmCt1gw2KAmt-zBszx7N7eHmx0XbKp8-P_8M6HP2imBvkPOIdiXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homotopy arguments for quantized Hall conductivity</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Richter, T. ; Schulz-Baldes, H.</creator><creatorcontrib>Richter, T. ; Schulz-Baldes, H.</creatorcontrib><description>Using the strong localization bounds obtained by the Aizenman–Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1379070</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 2001-08, Vol.42 (8), p.3439-3444</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ff48c9619918a62fc1f9c96ac7f3962496d925437fe893ff6550349f2a62afb23</citedby><cites>FETCH-LOGICAL-c363t-ff48c9619918a62fc1f9c96ac7f3962496d925437fe893ff6550349f2a62afb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1379070$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids></links><search><creatorcontrib>Richter, T.</creatorcontrib><creatorcontrib>Schulz-Baldes, H.</creatorcontrib><title>Homotopy arguments for quantized Hall conductivity</title><title>Journal of mathematical physics</title><description>Using the strong localization bounds obtained by the Aizenman–Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqdz0FLxDAUBOAgCtbVg_-gV4WueUmaJkdZ1AoLXvQcYtonlbapSbpQf70ru-Dd0zDwMTCEXANdA5X8DtbAK00rekIyoEoXlSzVKckoZaxgQqlzchHjJ6UASoiMsNoPPvlpyW34mId2TDFHH_Kv2Y6p-26bvLZ9nzs_NrNL3a5LyyU5Q9vH9uqYK_L2-PC6qYvty9Pz5n5bOC55KhCFclqC1qCsZOgA9b5bVyHXkgktG81KwStsleaIsiwpFxrZHlt8Z3xFbg67LvgYQ4tmCt1gw2KAmt-zBszx7N7eHmx0XbKp8-P_8M6HP2imBvkPOIdiXw</recordid><startdate>200108</startdate><enddate>200108</enddate><creator>Richter, T.</creator><creator>Schulz-Baldes, H.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200108</creationdate><title>Homotopy arguments for quantized Hall conductivity</title><author>Richter, T. ; Schulz-Baldes, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ff48c9619918a62fc1f9c96ac7f3962496d925437fe893ff6550349f2a62afb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, T.</creatorcontrib><creatorcontrib>Schulz-Baldes, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, T.</au><au>Schulz-Baldes, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homotopy arguments for quantized Hall conductivity</atitle><jtitle>Journal of mathematical physics</jtitle><date>2001-08</date><risdate>2001</risdate><volume>42</volume><issue>8</issue><spage>3439</spage><epage>3444</epage><pages>3439-3444</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>Using the strong localization bounds obtained by the Aizenman–Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.</abstract><doi>10.1063/1.1379070</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2001-08, Vol.42 (8), p.3439-3444 |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1379070 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
title | Homotopy arguments for quantized Hall conductivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homotopy%20arguments%20for%20quantized%20Hall%20conductivity&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Richter,%20T.&rft.date=2001-08&rft.volume=42&rft.issue=8&rft.spage=3439&rft.epage=3444&rft.pages=3439-3444&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1379070&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-ff48c9619918a62fc1f9c96ac7f3962496d925437fe893ff6550349f2a62afb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |