Loading…

Parametric crossover model and physical limit of stability in supercooled water

The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2002-04, Vol.116 (13), p.5657-5665
Main Authors: Kiselev, S. B., Ely, J. F.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73
cites cdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73
container_end_page 5665
container_issue 13
container_start_page 5657
container_title The Journal of chemical physics
container_volume 116
creator Kiselev, S. B.
Ely, J. F.
description The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P
doi_str_mv 10.1063/1.1453399
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1453399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1453399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoWEcX_oNsXXR8L2nTZCmDXzAwLnRdkjTBSDotSVT67x114MLlbg6XQ8g1whpB8FtcY9NyrtQJqRCkqjuh4JRUAAxrJUCck4ucPwAAO9ZUZPeikx5dScFSm6acpy-X6DgNLlK9H-j8vuRgdaQxjKHQydNctAkxlIWGPc2fs0t2mqIb6LcuLl2SM69jdlfHXpG3h_vXzVO93T0-b-62teVMlrpBUBZdg5KBUdbKQwZmJBPMCNEcltSMeY6t04Y543znpeay7aQ0g-34itz8c_9OJ-f7OYVRp6VH6H9N9NgfTfAf-PlRlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parametric crossover model and physical limit of stability in supercooled water</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Kiselev, S. B. ; Ely, J. F.</creator><creatorcontrib>Kiselev, S. B. ; Ely, J. F.</creatorcontrib><description>The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P&lt;190 MPa, the kinetic spinodal calculated with the CR EOS lies below the homogeneous nucleation temperature, TH, thus satisfying a physically obvious condition TKS⩽TH. We show that the CP2 is always lying in the region where no thermodynamic state is possible—the “nonthermodynamic habitat” for supercooled water; therefore, we consider our result as a strong argument for the TCP scenario, but with the unphysical—“virtual,” rather than real physical, CP2.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1453399</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2002-04, Vol.116 (13), p.5657-5665</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</citedby><cites>FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiselev, S. B.</creatorcontrib><creatorcontrib>Ely, J. F.</creatorcontrib><title>Parametric crossover model and physical limit of stability in supercooled water</title><title>The Journal of chemical physics</title><description>The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P&lt;190 MPa, the kinetic spinodal calculated with the CR EOS lies below the homogeneous nucleation temperature, TH, thus satisfying a physically obvious condition TKS⩽TH. We show that the CP2 is always lying in the region where no thermodynamic state is possible—the “nonthermodynamic habitat” for supercooled water; therefore, we consider our result as a strong argument for the TCP scenario, but with the unphysical—“virtual,” rather than real physical, CP2.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoWEcX_oNsXXR8L2nTZCmDXzAwLnRdkjTBSDotSVT67x114MLlbg6XQ8g1whpB8FtcY9NyrtQJqRCkqjuh4JRUAAxrJUCck4ucPwAAO9ZUZPeikx5dScFSm6acpy-X6DgNLlK9H-j8vuRgdaQxjKHQydNctAkxlIWGPc2fs0t2mqIb6LcuLl2SM69jdlfHXpG3h_vXzVO93T0-b-62teVMlrpBUBZdg5KBUdbKQwZmJBPMCNEcltSMeY6t04Y543znpeay7aQ0g-34itz8c_9OJ-f7OYVRp6VH6H9N9NgfTfAf-PlRlg</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Kiselev, S. B.</creator><creator>Ely, J. F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020401</creationdate><title>Parametric crossover model and physical limit of stability in supercooled water</title><author>Kiselev, S. B. ; Ely, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiselev, S. B.</creatorcontrib><creatorcontrib>Ely, J. F.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiselev, S. B.</au><au>Ely, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric crossover model and physical limit of stability in supercooled water</atitle><jtitle>The Journal of chemical physics</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>116</volume><issue>13</issue><spage>5657</spage><epage>5665</epage><pages>5657-5665</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P&lt;190 MPa, the kinetic spinodal calculated with the CR EOS lies below the homogeneous nucleation temperature, TH, thus satisfying a physically obvious condition TKS⩽TH. We show that the CP2 is always lying in the region where no thermodynamic state is possible—the “nonthermodynamic habitat” for supercooled water; therefore, we consider our result as a strong argument for the TCP scenario, but with the unphysical—“virtual,” rather than real physical, CP2.</abstract><doi>10.1063/1.1453399</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2002-04, Vol.116 (13), p.5657-5665
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1453399
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
title Parametric crossover model and physical limit of stability in supercooled water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20crossover%20model%20and%20physical%20limit%20of%20stability%20in%20supercooled%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kiselev,%20S.%20B.&rft.date=2002-04-01&rft.volume=116&rft.issue=13&rft.spage=5657&rft.epage=5665&rft.pages=5657-5665&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1453399&rft_dat=%3Ccrossref%3E10_1063_1_1453399%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true