Loading…
Parametric crossover model and physical limit of stability in supercooled water
The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with...
Saved in:
Published in: | The Journal of chemical physics 2002-04, Vol.116 (13), p.5657-5665 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73 |
container_end_page | 5665 |
container_issue | 13 |
container_start_page | 5657 |
container_title | The Journal of chemical physics |
container_volume | 116 |
creator | Kiselev, S. B. Ely, J. F. |
description | The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P |
doi_str_mv | 10.1063/1.1453399 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1453399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1453399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoWEcX_oNsXXR8L2nTZCmDXzAwLnRdkjTBSDotSVT67x114MLlbg6XQ8g1whpB8FtcY9NyrtQJqRCkqjuh4JRUAAxrJUCck4ucPwAAO9ZUZPeikx5dScFSm6acpy-X6DgNLlK9H-j8vuRgdaQxjKHQydNctAkxlIWGPc2fs0t2mqIb6LcuLl2SM69jdlfHXpG3h_vXzVO93T0-b-62teVMlrpBUBZdg5KBUdbKQwZmJBPMCNEcltSMeY6t04Y543znpeay7aQ0g-34itz8c_9OJ-f7OYVRp6VH6H9N9NgfTfAf-PlRlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parametric crossover model and physical limit of stability in supercooled water</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Kiselev, S. B. ; Ely, J. F.</creator><creatorcontrib>Kiselev, S. B. ; Ely, J. F.</creatorcontrib><description>The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P<190 MPa, the kinetic spinodal calculated with the CR EOS lies below the homogeneous nucleation temperature, TH, thus satisfying a physically obvious condition TKS⩽TH. We show that the CP2 is always lying in the region where no thermodynamic state is possible—the “nonthermodynamic habitat” for supercooled water; therefore, we consider our result as a strong argument for the TCP scenario, but with the unphysical—“virtual,” rather than real physical, CP2.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1453399</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2002-04, Vol.116 (13), p.5657-5665</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</citedby><cites>FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kiselev, S. B.</creatorcontrib><creatorcontrib>Ely, J. F.</creatorcontrib><title>Parametric crossover model and physical limit of stability in supercooled water</title><title>The Journal of chemical physics</title><description>The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P<190 MPa, the kinetic spinodal calculated with the CR EOS lies below the homogeneous nucleation temperature, TH, thus satisfying a physically obvious condition TKS⩽TH. We show that the CP2 is always lying in the region where no thermodynamic state is possible—the “nonthermodynamic habitat” for supercooled water; therefore, we consider our result as a strong argument for the TCP scenario, but with the unphysical—“virtual,” rather than real physical, CP2.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoWEcX_oNsXXR8L2nTZCmDXzAwLnRdkjTBSDotSVT67x114MLlbg6XQ8g1whpB8FtcY9NyrtQJqRCkqjuh4JRUAAxrJUCck4ucPwAAO9ZUZPeikx5dScFSm6acpy-X6DgNLlK9H-j8vuRgdaQxjKHQydNctAkxlIWGPc2fs0t2mqIb6LcuLl2SM69jdlfHXpG3h_vXzVO93T0-b-62teVMlrpBUBZdg5KBUdbKQwZmJBPMCNEcltSMeY6t04Y543znpeay7aQ0g-34itz8c_9OJ-f7OYVRp6VH6H9N9NgfTfAf-PlRlg</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Kiselev, S. B.</creator><creator>Ely, J. F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020401</creationdate><title>Parametric crossover model and physical limit of stability in supercooled water</title><author>Kiselev, S. B. ; Ely, J. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiselev, S. B.</creatorcontrib><creatorcontrib>Ely, J. F.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiselev, S. B.</au><au>Ely, J. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric crossover model and physical limit of stability in supercooled water</atitle><jtitle>The Journal of chemical physics</jtitle><date>2002-04-01</date><risdate>2002</risdate><volume>116</volume><issue>13</issue><spage>5657</spage><epage>5665</epage><pages>5657-5665</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The two-critical point (TCP) scenario for supercooled water was tested against experimental data with the crossover equation of state (CR EOS) based on the fundamental results of the fluctuation theory of critical phenomena. The CR EOS predicts a second critical point, CP2, in supercooled water with the parameters Tc2=188 K, ρc2=1100 kg⋅m−3, Pc2=230 MPa, and represents the experimental values of the isothermal compressibility in liquid and supercooled water with an average absolute deviation (AAD) of about 1.7% in the pressure range P=0.1–190 MPa, the liquid densities with an AAD of about 0.1%, and the heat capacity with an AAD of about 1.0% in the temperature range 245 K⩽T⩽300 K. The CR EOS also allows calculation of the physical limit of stability in supercooled water—the kinetic spinodal, TKS. At all pressures P<190 MPa, the kinetic spinodal calculated with the CR EOS lies below the homogeneous nucleation temperature, TH, thus satisfying a physically obvious condition TKS⩽TH. We show that the CP2 is always lying in the region where no thermodynamic state is possible—the “nonthermodynamic habitat” for supercooled water; therefore, we consider our result as a strong argument for the TCP scenario, but with the unphysical—“virtual,” rather than real physical, CP2.</abstract><doi>10.1063/1.1453399</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2002-04, Vol.116 (13), p.5657-5665 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1453399 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
title | Parametric crossover model and physical limit of stability in supercooled water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20crossover%20model%20and%20physical%20limit%20of%20stability%20in%20supercooled%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kiselev,%20S.%20B.&rft.date=2002-04-01&rft.volume=116&rft.issue=13&rft.spage=5657&rft.epage=5665&rft.pages=5657-5665&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1453399&rft_dat=%3Ccrossref%3E10_1063_1_1453399%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-4109c1e41820b9cc8cc8d2b8262b664cc88a22f315eab2ebef7f8a385788bdc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |