Loading…
Classical polarizable force fields parametrized from ab initio calculations
A computationally efficient molecular dynamics implementation of a polarizable force field parametrized from ab initio data is presented. Our formulation, based on a second-order expansion of the energy density, models the density response using Gaussian basis functions derived from density function...
Saved in:
Published in: | The Journal of chemical physics 2002-07, Vol.117 (4), p.1416-1433 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A computationally efficient molecular dynamics implementation of a polarizable force field parametrized from ab initio data is presented. Our formulation, based on a second-order expansion of the energy density, models the density response using Gaussian basis functions derived from density functional linear response theory. Polarization effects are described by the time evolution of the basis function coefficients propagated via an extended Lagrangian formalism. We have devised a general protocol for the parametrization of the force field. We will show that a single parametrization of the model can describe the polarization effects of LiI in the condensed phase. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.1487822 |