Loading…

Photoacoustic trace gas detection of ethane using a continuously tunable, continuous-wave optical parametric oscillator based on periodically poled lithium niobate

A 1.2 W, continuous-wave, continuously-tunable, singly-resonant optical parametric oscillator (OPO) (idler tuning range 3.0–3.8 μm), pumped by a 10 W continuous-wave Nd:YAG laser, is used in combination with a photoacoustic cell for the detection of ethane. An intracavity solid-state etalon (thickne...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2002-08, Vol.81 (7), p.1157-1159
Main Authors: van Herpen, M. M. J. W., Li, Shaocheng, Bisson, S. E., Harren, F. J. M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 1.2 W, continuous-wave, continuously-tunable, singly-resonant optical parametric oscillator (OPO) (idler tuning range 3.0–3.8 μm), pumped by a 10 W continuous-wave Nd:YAG laser, is used in combination with a photoacoustic cell for the detection of ethane. An intracavity solid-state etalon (thickness 400 μm) was used to stabilize the OPO cavity and could be used to mode-hop tune the idler wavelength over 10 cm−1. The usefulness of the system was demonstrated by determining a detection limit for ethane down to 10 parts per trillion. The selectivity was achieved by making a 24 GHz wide pump laser scan over the ethane absorption line at 2996.9 cm−1, after which a Lorentzian fit determined the total area of the absorption signal. Both area value and peak value proved to be linearly depending on the ethane concentration.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1500410