Loading…
Tunable ferromagnetic resonance peak in tunneling magnetoresistive sensor structures
Noise properties of submicron scale tunneling magnetoresistive (TMR) sensors were investigated at frequencies up to 3 GHz. Noise spectral density was measured as a function of frequency, applied field, and bias current. Noise spectral density versus frequency dependence exhibits a pronounced peak, t...
Saved in:
Published in: | Applied physics letters 2002-12, Vol.81 (24), p.4559-4561 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Noise properties of submicron scale tunneling magnetoresistive (TMR) sensors were investigated at frequencies up to 3 GHz. Noise spectral density was measured as a function of frequency, applied field, and bias current. Noise spectral density versus frequency dependence exhibits a pronounced peak, tunable over a wide frequency range. This peak appears to originate from current-driven precession of magnetization. The peak center frequency can be as low as 200 MHz and has a strong dependence on applied field and bias current. The damping constant α of the main precession mode in the TMR sensor free layer was found to be in the range of 0.05–0.18. It is shown that the magnetic state of a magnetoresistive sensor depends on the bias current and may be characterized by noise properties. The magnetoresistive element can operate as a source of high-frequency radiation with 1 nW emitting power from a 0.1 μm2 junction and signal to noise ratio of 10 dB. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1521578 |