Loading…
Electronic rectification in protein devices
We show that the electron-transfer protein azurin can be used to fabricate biomolecular rectifiers exploiting its native redox properties, chemisorption capability and electrostatic features. The devices consist of a protein layer interconnecting nanoscale electrodes fabricated by electron beam lith...
Saved in:
Published in: | Applied physics letters 2003-01, Vol.82 (3), p.472-474 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that the electron-transfer protein azurin can be used to fabricate biomolecular rectifiers exploiting its native redox properties, chemisorption capability and electrostatic features. The devices consist of a protein layer interconnecting nanoscale electrodes fabricated by electron beam lithography. They exhibit a rectification ratio as large as 500 at 10 V, and operate at room temperature and in air. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1530748 |