Loading…
Development of a niobium nanosuperconducting quantum interference device for the detection of small spin populations
Electron-beam lithography and reactive ion etching have been used to fabricate thin-film Au/Nb bridges with widths ∼50 nm. The Au layer was used as both a mask for etching the Nb superconducting bridge and as a resistive shunt in the completed devices. Using these junctions, a dc superconducting qua...
Saved in:
Published in: | Applied physics letters 2003-02, Vol.82 (7), p.1078-1080 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron-beam lithography and reactive ion etching have been used to fabricate thin-film Au/Nb bridges with widths ∼50 nm. The Au layer was used as both a mask for etching the Nb superconducting bridge and as a resistive shunt in the completed devices. Using these junctions, a dc superconducting quantum interference device (SQUID) design with a hole size of 200 nm×200 nm (nano-SQUID) has also been fabricated and characterized. A flux noise of approximately 7×10−6 Φ0/Hz1/2 at 4.2 K has been achieved, from which a calculated spin sensitivity of 250 spin/Hz1/2 is predicted. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1554770 |