Loading…
Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide
Nanometric optical waveguides can be made by using the dependence of surface plasmon polaritons on the gap-width between two parallel metallic plates. This waveguide can be called surface plasmon polariton gap waveguide (SPGW). The H-plane and E-plane optical circuits that consist of SPGWs have been...
Saved in:
Published in: | Applied physics letters 2003-02, Vol.82 (8), p.1158-1160 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanometric optical waveguides can be made by using the dependence of surface plasmon polaritons on the gap-width between two parallel metallic plates. This waveguide can be called surface plasmon polariton gap waveguide (SPGW). The H-plane and E-plane optical circuits that consist of SPGWs have been considered. Three-dimensional numerical simulations have been performed for the nanometric optical circuits that consist of straight and branched bend SPGWs. Results show that optical circuits considered in this letter can perform guiding, branching, and bending functions of optical waves in the nanometric device. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1557323 |