Loading…
Illumination-induced recovery of Cu(In,Ga)Se2 solar cells after high-energy electron irradiation
Cu ( In , Ga ) Se 2 / CdS / ZnO solar cells irradiated with a 1 MeV electron fluence of 1018 cm−2 degrade to about 80% of their initial conversion efficiency. Illumination with white light at an intensity of 100 mW cm−2 for 3 h at room temperature restores more than 90% of the preirradiation efficie...
Saved in:
Published in: | Applied physics letters 2003-03, Vol.82 (9), p.1410-1412 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cu ( In , Ga ) Se 2 / CdS / ZnO solar cells irradiated with a 1 MeV electron fluence of 1018 cm−2 degrade to about 80% of their initial conversion efficiency. Illumination with white light at an intensity of 100 mW cm−2 for 3 h at room temperature restores more than 90% of the preirradiation efficiency. The healing process is more efficient if the device is kept under open-circuit conditions during illumination than for short-circuit conditions. Injecting minority carriers by voltage bias in the dark, instead of illumination, does not cause enduring device recovery. This behavior of Cu(In,Ga)Se2 is in contrast to illumination-induced defect healing processes reported for other semiconductor materials, like GaAs, InP, or GaP. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1559648 |