Loading…

Modeling gas flow through microchannels and nanopores

Microchannel based systems have emerged as a critical design trend in development of precise control and maneuvering of small devices. In microelectronics, space propulsion and biomedical areas, these systems are especially useful. Nanoscale pores are recently becoming of great interest due to their...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2003-04, Vol.93 (8), p.4870-4879
Main Authors: Roy, Subrata, Raju, Reni, Chuang, Helen F., Cruden, Brett A., Meyyappan, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microchannel based systems have emerged as a critical design trend in development of precise control and maneuvering of small devices. In microelectronics, space propulsion and biomedical areas, these systems are especially useful. Nanoscale pores are recently becoming of great interest due to their beneficial drag and heat transfer properties. However it is difficult to predict the flow performance of these microsystems and nanosystems numerically since the standard assumptions of using Navier–Stokes equations break down at micrometer scales, while the computational times of applicable molecular-dynamics codes become exorbitant. A two-dimensional finite-element based microscale flow model is developed to efficiently predict the overall flow characteristics up to the transition regime for reasonably high Knudsen number flow inside microchannels and nanopores. Presented two-dimensional numerical results for Poiseuille flow of a simple fluid through the microchannel are comparable to the numerical and experimental data published in the literature. The nanopore solutions are also validated with presented experimental data.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1559936