Loading…
Quantum cascade lasers grown by metalorganic vapor phase epitaxy
We report the growth of GaAs-based quantum cascade lasers using atmospheric pressure metalorganic vapor phase epitaxy. The necessary control of interface abruptness and layer thickness uniformity throughout the structure has been achieved using a horizontal reactor in combination with individually p...
Saved in:
Published in: | Applied physics letters 2003-06, Vol.82 (24), p.4221-4223 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the growth of GaAs-based quantum cascade lasers using atmospheric pressure metalorganic vapor phase epitaxy. The necessary control of interface abruptness and layer thickness uniformity throughout the structure has been achieved using a horizontal reactor in combination with individually purged vent/run valves. A low-temperature threshold current density of 10 kA/cm2 and maximum operating temperature of 140 K have been measured. These performance levels are comparable with early GaAs-based devices grown using molecular-beam epitaxy. The measured emission wavelength (λ∼11.8 μm) is approximately 3-μm longer than the calculated transition wavelength, which we explain using a model incorporating compositional grading of the active region barriers. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1583858 |