Loading…

Fractal kinetics in drug release from finite fractal matrices

We have re-examined the random release of particles from fractal polymer matrices using Monte Carlo simulations, a problem originally studied by Bunde et al. [J. Chem. Phys. 83, 5909 (1985)]. A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries of...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2003-09, Vol.119 (12), p.6373-6377
Main Authors: Kosmidis, Kosmas, Argyrakis, Panos, Macheras, Panos
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-828b4a62bd7222b6a4a44cb06919147f9770244a35b0753ff4d5af77a736b67a3
cites cdi_FETCH-LOGICAL-c293t-828b4a62bd7222b6a4a44cb06919147f9770244a35b0753ff4d5af77a736b67a3
container_end_page 6377
container_issue 12
container_start_page 6373
container_title The Journal of chemical physics
container_volume 119
creator Kosmidis, Kosmas
Argyrakis, Panos
Macheras, Panos
description We have re-examined the random release of particles from fractal polymer matrices using Monte Carlo simulations, a problem originally studied by Bunde et al. [J. Chem. Phys. 83, 5909 (1985)]. A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries of the structure they are removed from the system. We find that the number of particles that escape from the matrix as a function of time can be approximated by a Weibull (stretched exponential) function, similar to the case of release from Euclidean matrices. The earlier result that fractal release rates are described by power laws is correct only at the initial stage of the release, but it has to be modified if one is to describe in one picture the entire process for a finite system. These results pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery systems.
doi_str_mv 10.1063/1.1603731
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1603731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1603731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-828b4a62bd7222b6a4a44cb06919147f9770244a35b0753ff4d5af77a736b67a3</originalsourceid><addsrcrecordid>eNotj7FOwzAURS0EEqEw8AdZGVLesx2_eGBAFQWkSiwwR8-OjQxJiuww8Peoaqdzh6MrHSFuEdYIRt3jGg0oUngmKoTONmQsnIsKQGJjDZhLcVXKFwAgSV2Jh21mv_BYf6c5LMmXOs31kH8_6xzGwCXUMe-nOqY5LYd9lCdecvKhXIuLyGMJNyeuxMf26X3z0uzenl83j7vGS6uWppOd02ykG0hK6Qxr1to7MBYtaoqWCKTWrFoH1KoY9dByJGJSxhlitRJ3x1-f96XkEPufnCbOfz1Cf-jusT91q3-lkkj1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractal kinetics in drug release from finite fractal matrices</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Kosmidis, Kosmas ; Argyrakis, Panos ; Macheras, Panos</creator><creatorcontrib>Kosmidis, Kosmas ; Argyrakis, Panos ; Macheras, Panos</creatorcontrib><description>We have re-examined the random release of particles from fractal polymer matrices using Monte Carlo simulations, a problem originally studied by Bunde et al. [J. Chem. Phys. 83, 5909 (1985)]. A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries of the structure they are removed from the system. We find that the number of particles that escape from the matrix as a function of time can be approximated by a Weibull (stretched exponential) function, similar to the case of release from Euclidean matrices. The earlier result that fractal release rates are described by power laws is correct only at the initial stage of the release, but it has to be modified if one is to describe in one picture the entire process for a finite system. These results pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1603731</identifier><language>eng</language><ispartof>The Journal of chemical physics, 2003-09, Vol.119 (12), p.6373-6377</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-828b4a62bd7222b6a4a44cb06919147f9770244a35b0753ff4d5af77a736b67a3</citedby><cites>FETCH-LOGICAL-c293t-828b4a62bd7222b6a4a44cb06919147f9770244a35b0753ff4d5af77a736b67a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kosmidis, Kosmas</creatorcontrib><creatorcontrib>Argyrakis, Panos</creatorcontrib><creatorcontrib>Macheras, Panos</creatorcontrib><title>Fractal kinetics in drug release from finite fractal matrices</title><title>The Journal of chemical physics</title><description>We have re-examined the random release of particles from fractal polymer matrices using Monte Carlo simulations, a problem originally studied by Bunde et al. [J. Chem. Phys. 83, 5909 (1985)]. A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries of the structure they are removed from the system. We find that the number of particles that escape from the matrix as a function of time can be approximated by a Weibull (stretched exponential) function, similar to the case of release from Euclidean matrices. The earlier result that fractal release rates are described by power laws is correct only at the initial stage of the release, but it has to be modified if one is to describe in one picture the entire process for a finite system. These results pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery systems.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotj7FOwzAURS0EEqEw8AdZGVLesx2_eGBAFQWkSiwwR8-OjQxJiuww8Peoaqdzh6MrHSFuEdYIRt3jGg0oUngmKoTONmQsnIsKQGJjDZhLcVXKFwAgSV2Jh21mv_BYf6c5LMmXOs31kH8_6xzGwCXUMe-nOqY5LYd9lCdecvKhXIuLyGMJNyeuxMf26X3z0uzenl83j7vGS6uWppOd02ykG0hK6Qxr1to7MBYtaoqWCKTWrFoH1KoY9dByJGJSxhlitRJ3x1-f96XkEPufnCbOfz1Cf-jusT91q3-lkkj1</recordid><startdate>20030922</startdate><enddate>20030922</enddate><creator>Kosmidis, Kosmas</creator><creator>Argyrakis, Panos</creator><creator>Macheras, Panos</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030922</creationdate><title>Fractal kinetics in drug release from finite fractal matrices</title><author>Kosmidis, Kosmas ; Argyrakis, Panos ; Macheras, Panos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-828b4a62bd7222b6a4a44cb06919147f9770244a35b0753ff4d5af77a736b67a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosmidis, Kosmas</creatorcontrib><creatorcontrib>Argyrakis, Panos</creatorcontrib><creatorcontrib>Macheras, Panos</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosmidis, Kosmas</au><au>Argyrakis, Panos</au><au>Macheras, Panos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal kinetics in drug release from finite fractal matrices</atitle><jtitle>The Journal of chemical physics</jtitle><date>2003-09-22</date><risdate>2003</risdate><volume>119</volume><issue>12</issue><spage>6373</spage><epage>6377</epage><pages>6373-6377</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>We have re-examined the random release of particles from fractal polymer matrices using Monte Carlo simulations, a problem originally studied by Bunde et al. [J. Chem. Phys. 83, 5909 (1985)]. A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries of the structure they are removed from the system. We find that the number of particles that escape from the matrix as a function of time can be approximated by a Weibull (stretched exponential) function, similar to the case of release from Euclidean matrices. The earlier result that fractal release rates are described by power laws is correct only at the initial stage of the release, but it has to be modified if one is to describe in one picture the entire process for a finite system. These results pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery systems.</abstract><doi>10.1063/1.1603731</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2003-09, Vol.119 (12), p.6373-6377
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_1_1603731
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Fractal kinetics in drug release from finite fractal matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A23%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20kinetics%20in%20drug%20release%20from%20finite%20fractal%20matrices&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kosmidis,%20Kosmas&rft.date=2003-09-22&rft.volume=119&rft.issue=12&rft.spage=6373&rft.epage=6377&rft.pages=6373-6377&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1603731&rft_dat=%3Ccrossref%3E10_1063_1_1603731%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-828b4a62bd7222b6a4a44cb06919147f9770244a35b0753ff4d5af77a736b67a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true