Loading…
Charge detrapping in HfO2 high-κ gate dielectric stacks
We investigated the kinetics of charge detrapping in high-κ gate stacks fabricated with ultrathin HfO2 dielectric films grown by atomic layer deposition and a polycrystalline silicon gate electrode. It was observed that charge trapped after electron injection in the high-κ stack was unstable and slo...
Saved in:
Published in: | Applied physics letters 2003-12, Vol.83 (25), p.5223-5225 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigated the kinetics of charge detrapping in high-κ gate stacks fabricated with ultrathin HfO2 dielectric films grown by atomic layer deposition and a polycrystalline silicon gate electrode. It was observed that charge trapped after electron injection in the high-κ stack was unstable and slowly decayed over time. The decay does not follow a simple first-order exponential law suggesting complex detrapping mechanism(s), possibly involving more than one type of trap present in the stack. The detrapping rate was found to depend strongly on gate voltage, temperature, and light illumination. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1633332 |