Loading…

Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations

A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1973-03, Vol.44 (3), p.1033-1037
Main Author: Boser, O.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993
cites cdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993
container_end_page 1037
container_issue 3
container_start_page 1033
container_title Journal of applied physics
container_volume 44
creator Boser, O.
description A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation.
doi_str_mv 10.1063/1.1662302
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1662302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1662302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKsHv0GuHnZ9L-lmN0cp_ikUvNTz8jZN3JU0kSRF-u1ttadhhh_DMIzdI9QISj5ijUoJCeKCzRA6XbVNA5dsBiCw6nSrr9lNzl8AiJ3UM3ZYBef3NhjLo-Pj9DlyE48ulERliiGf4hz9vlhOJe6OPvAyWm7SVCZDnjsff3guyeY_dpgCpQMn7-Mh13xV881oY7JnOO7D9r_4ll058tnenXXOPl6eN8u3av3-ulo-rSuDC1EqSYumU2pQWmwtOSApsDWEnRHOaFJWg9ItDbBFNK5dIA5OIILEBqnVWs7Zw3-vSTHnZF3_nabdcWOP0J8-67E_fyZ_AVOwX70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</title><source>AIP Digital Archive</source><creator>Boser, O.</creator><creatorcontrib>Boser, O.</creatorcontrib><description>A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1662302</identifier><language>eng</language><ispartof>Journal of applied physics, 1973-03, Vol.44 (3), p.1033-1037</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</citedby><cites>FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Boser, O.</creatorcontrib><title>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</title><title>Journal of applied physics</title><description>A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEUxIMoWKsHv0GuHnZ9L-lmN0cp_ikUvNTz8jZN3JU0kSRF-u1ttadhhh_DMIzdI9QISj5ijUoJCeKCzRA6XbVNA5dsBiCw6nSrr9lNzl8AiJ3UM3ZYBef3NhjLo-Pj9DlyE48ulERliiGf4hz9vlhOJe6OPvAyWm7SVCZDnjsff3guyeY_dpgCpQMn7-Mh13xV881oY7JnOO7D9r_4ll058tnenXXOPl6eN8u3av3-ulo-rSuDC1EqSYumU2pQWmwtOSApsDWEnRHOaFJWg9ItDbBFNK5dIA5OIILEBqnVWs7Zw3-vSTHnZF3_nabdcWOP0J8-67E_fyZ_AVOwX70</recordid><startdate>19730301</startdate><enddate>19730301</enddate><creator>Boser, O.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19730301</creationdate><title>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</title><author>Boser, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boser, O.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boser, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</atitle><jtitle>Journal of applied physics</jtitle><date>1973-03-01</date><risdate>1973</risdate><volume>44</volume><issue>3</issue><spage>1033</spage><epage>1037</epage><pages>1033-1037</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation.</abstract><doi>10.1063/1.1662302</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1973-03, Vol.44 (3), p.1033-1037
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1662302
source AIP Digital Archive
title Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20high%20concentrations%20of%20solute%20atoms%20on%20the%20critical%20flow%20stress%20of%20binary%20alloys.%20I.%20Theoretical%20foundations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Boser,%20O.&rft.date=1973-03-01&rft.volume=44&rft.issue=3&rft.spage=1033&rft.epage=1037&rft.pages=1033-1037&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1662302&rft_dat=%3Ccrossref%3E10_1063_1_1662302%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true