Loading…
Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations
A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of...
Saved in:
Published in: | Journal of applied physics 1973-03, Vol.44 (3), p.1033-1037 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993 |
---|---|
cites | cdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993 |
container_end_page | 1037 |
container_issue | 3 |
container_start_page | 1033 |
container_title | Journal of applied physics |
container_volume | 44 |
creator | Boser, O. |
description | A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation. |
doi_str_mv | 10.1063/1.1662302 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1662302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1662302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKsHv0GuHnZ9L-lmN0cp_ikUvNTz8jZN3JU0kSRF-u1ttadhhh_DMIzdI9QISj5ijUoJCeKCzRA6XbVNA5dsBiCw6nSrr9lNzl8AiJ3UM3ZYBef3NhjLo-Pj9DlyE48ulERliiGf4hz9vlhOJe6OPvAyWm7SVCZDnjsff3guyeY_dpgCpQMn7-Mh13xV881oY7JnOO7D9r_4ll058tnenXXOPl6eN8u3av3-ulo-rSuDC1EqSYumU2pQWmwtOSApsDWEnRHOaFJWg9ItDbBFNK5dIA5OIILEBqnVWs7Zw3-vSTHnZF3_nabdcWOP0J8-67E_fyZ_AVOwX70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</title><source>AIP Digital Archive</source><creator>Boser, O.</creator><creatorcontrib>Boser, O.</creatorcontrib><description>A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1662302</identifier><language>eng</language><ispartof>Journal of applied physics, 1973-03, Vol.44 (3), p.1033-1037</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</citedby><cites>FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Boser, O.</creatorcontrib><title>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</title><title>Journal of applied physics</title><description>A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEUxIMoWKsHv0GuHnZ9L-lmN0cp_ikUvNTz8jZN3JU0kSRF-u1ttadhhh_DMIzdI9QISj5ijUoJCeKCzRA6XbVNA5dsBiCw6nSrr9lNzl8AiJ3UM3ZYBef3NhjLo-Pj9DlyE48ulERliiGf4hz9vlhOJe6OPvAyWm7SVCZDnjsff3guyeY_dpgCpQMn7-Mh13xV881oY7JnOO7D9r_4ll058tnenXXOPl6eN8u3av3-ulo-rSuDC1EqSYumU2pQWmwtOSApsDWEnRHOaFJWg9ItDbBFNK5dIA5OIILEBqnVWs7Zw3-vSTHnZF3_nabdcWOP0J8-67E_fyZ_AVOwX70</recordid><startdate>19730301</startdate><enddate>19730301</enddate><creator>Boser, O.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19730301</creationdate><title>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</title><author>Boser, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boser, O.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boser, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations</atitle><jtitle>Journal of applied physics</jtitle><date>1973-03-01</date><risdate>1973</risdate><volume>44</volume><issue>3</issue><spage>1033</spage><epage>1037</epage><pages>1033-1037</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>A theory of the flow stress of metal crystals with high concentrations of solute atoms is developed with the help of the theory of stationary random functions. The dislocation model used to calculate the critical flow stress is a Frank-Read source. Under the assumption that at high concentrations of solute atoms the dislocation will interact principally with groups of atoms spread out along the dislocation line rather than with single atoms, no thermal activation can take place. This results in a temperature-independent critical flow stress, which is indeed observed in solid-solution crystals as the so-called plateau stress. The theory requires that the plateau stress increase with solute concentration proportional to [C(1−C)]1/2 and, at fixed concentrations, be proportional to the magnitude of the interaction between solute atoms and dislocation.</abstract><doi>10.1063/1.1662302</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 1973-03, Vol.44 (3), p.1033-1037 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1662302 |
source | AIP Digital Archive |
title | Influence of high concentrations of solute atoms on the critical flow stress of binary alloys. I. Theoretical foundations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20high%20concentrations%20of%20solute%20atoms%20on%20the%20critical%20flow%20stress%20of%20binary%20alloys.%20I.%20Theoretical%20foundations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Boser,%20O.&rft.date=1973-03-01&rft.volume=44&rft.issue=3&rft.spage=1033&rft.epage=1037&rft.pages=1033-1037&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1662302&rft_dat=%3Ccrossref%3E10_1063_1_1662302%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c142t-3a45866b692deaf0a3217ca18c2fc9a6e90697ab0d11cf7411bf21103151a7993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |