Loading…

Harmonic Analysis of Analytic Functions on Hyperspheres

The real analytic functions on the hypersphere Sn are shown to be in one‐to‐one correspondence with the family of series of hyperspherical harmonics with exponentially falling coefficients. These functions may be continued onto a larger complex manifold on which they represent holomorphic functions....

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 1972-07, Vol.13 (7), p.950-955
Main Author: Beers, Brian Lee
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-e8080ad61e3b98bf6fcb2d7178366e440a7de1f4e115eaef1f739b700134ca33
cites cdi_FETCH-LOGICAL-c299t-e8080ad61e3b98bf6fcb2d7178366e440a7de1f4e115eaef1f739b700134ca33
container_end_page 955
container_issue 7
container_start_page 950
container_title Journal of mathematical physics
container_volume 13
creator Beers, Brian Lee
description The real analytic functions on the hypersphere Sn are shown to be in one‐to‐one correspondence with the family of series of hyperspherical harmonics with exponentially falling coefficients. These functions may be continued onto a larger complex manifold on which they represent holomorphic functions. The convergence of the harmonic expansions for the real analytic functions on Sn is governed by the singularity structure of the continued function on this complex manifold.
doi_str_mv 10.1063/1.1666093
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1666093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-e8080ad61e3b98bf6fcb2d7178366e440a7de1f4e115eaef1f739b700134ca33</originalsourceid><addsrcrecordid>eNqdj09Lw0AUxBdRsFYPfoNcFVLfy273z7EUa4SCl96XzeYtRtok7EYh396UFLx7mmH4Mcww9oiwQpD8BVcopQTDr9gCQZtcybW-ZguAosgLofUtu0vpCwBRC7FgqnTx1LWNzzatO46pSVkXZj9M4e679UPTtVPaZuXYU0z9J0VK9-wmuGOih4su2WH3etiW-f7j7X272ee-MGbISYMGV0skXhldBRl8VdQKleZSkhDgVE0YBCGuyVHAoLip1DSPC-84X7KnudbHLqVIwfaxObk4WgR7PmzRXg5P7PPMJt8M7rz6f_BPF_9A29eB_wL53mQJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harmonic Analysis of Analytic Functions on Hyperspheres</title><source>AIP Digital Archive</source><creator>Beers, Brian Lee</creator><creatorcontrib>Beers, Brian Lee</creatorcontrib><description>The real analytic functions on the hypersphere Sn are shown to be in one‐to‐one correspondence with the family of series of hyperspherical harmonics with exponentially falling coefficients. These functions may be continued onto a larger complex manifold on which they represent holomorphic functions. The convergence of the harmonic expansions for the real analytic functions on Sn is governed by the singularity structure of the continued function on this complex manifold.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1666093</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1972-07, Vol.13 (7), p.950-955</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-e8080ad61e3b98bf6fcb2d7178366e440a7de1f4e115eaef1f739b700134ca33</citedby><cites>FETCH-LOGICAL-c299t-e8080ad61e3b98bf6fcb2d7178366e440a7de1f4e115eaef1f739b700134ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1666093$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76262</link.rule.ids></links><search><creatorcontrib>Beers, Brian Lee</creatorcontrib><title>Harmonic Analysis of Analytic Functions on Hyperspheres</title><title>Journal of mathematical physics</title><description>The real analytic functions on the hypersphere Sn are shown to be in one‐to‐one correspondence with the family of series of hyperspherical harmonics with exponentially falling coefficients. These functions may be continued onto a larger complex manifold on which they represent holomorphic functions. The convergence of the harmonic expansions for the real analytic functions on Sn is governed by the singularity structure of the continued function on this complex manifold.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><recordid>eNqdj09Lw0AUxBdRsFYPfoNcFVLfy273z7EUa4SCl96XzeYtRtok7EYh396UFLx7mmH4Mcww9oiwQpD8BVcopQTDr9gCQZtcybW-ZguAosgLofUtu0vpCwBRC7FgqnTx1LWNzzatO46pSVkXZj9M4e679UPTtVPaZuXYU0z9J0VK9-wmuGOih4su2WH3etiW-f7j7X272ee-MGbISYMGV0skXhldBRl8VdQKleZSkhDgVE0YBCGuyVHAoLip1DSPC-84X7KnudbHLqVIwfaxObk4WgR7PmzRXg5P7PPMJt8M7rz6f_BPF_9A29eB_wL53mQJ</recordid><startdate>197207</startdate><enddate>197207</enddate><creator>Beers, Brian Lee</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197207</creationdate><title>Harmonic Analysis of Analytic Functions on Hyperspheres</title><author>Beers, Brian Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-e8080ad61e3b98bf6fcb2d7178366e440a7de1f4e115eaef1f739b700134ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beers, Brian Lee</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beers, Brian Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic Analysis of Analytic Functions on Hyperspheres</atitle><jtitle>Journal of mathematical physics</jtitle><date>1972-07</date><risdate>1972</risdate><volume>13</volume><issue>7</issue><spage>950</spage><epage>955</epage><pages>950-955</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The real analytic functions on the hypersphere Sn are shown to be in one‐to‐one correspondence with the family of series of hyperspherical harmonics with exponentially falling coefficients. These functions may be continued onto a larger complex manifold on which they represent holomorphic functions. The convergence of the harmonic expansions for the real analytic functions on Sn is governed by the singularity structure of the continued function on this complex manifold.</abstract><doi>10.1063/1.1666093</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1972-07, Vol.13 (7), p.950-955
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_1666093
source AIP Digital Archive
title Harmonic Analysis of Analytic Functions on Hyperspheres
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A02%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20Analysis%20of%20Analytic%20Functions%20on%20Hyperspheres&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Beers,%20Brian%20Lee&rft.date=1972-07&rft.volume=13&rft.issue=7&rft.spage=950&rft.epage=955&rft.pages=950-955&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1666093&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-e8080ad61e3b98bf6fcb2d7178366e440a7de1f4e115eaef1f739b700134ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true