Loading…

A geometric generalization of Hooke's law

A geometrical version of Hooke's law for prestressed materials is established using techniques suggested by general relativistic elasticity theory. The concept of dragged (D) tensor fields is used to present a simple coordinate independent form of Hook's law for prestressed materials: P̄ij...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical physics 1973-09, Vol.14 (9), p.1285-1290
Main Authors: Glass, Edward N., Winicour, Jeffrey
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-951d2254119da40b955988ab618b05f3a4cdc307d1c511d42a966cf962be5b0d3
cites cdi_FETCH-LOGICAL-c324t-951d2254119da40b955988ab618b05f3a4cdc307d1c511d42a966cf962be5b0d3
container_end_page 1290
container_issue 9
container_start_page 1285
container_title Journal of mathematical physics
container_volume 14
creator Glass, Edward N.
Winicour, Jeffrey
description A geometrical version of Hooke's law for prestressed materials is established using techniques suggested by general relativistic elasticity theory. The concept of dragged (D) tensor fields is used to present a simple coordinate independent form of Hook's law for prestressed materials: P̄ij = D Pij + Cijkl η kl , where Pij is the initial stress, Cijkl are the second order elastic coefficients, and η kl is the strain. The effects of initial stresses on Hooke's law have recently been given empirical significance by Wallace and the work here agrees with and simplifies his formalism. The elastic behavior of neutron stars, which requires a general relativistic treatment, is a case in which large prestresses of the type considered here are as important as the elastic modulii themselves. The version of Hooke's law developed here is the classical limit of the general relativistic theory of stellar elasticity. A simple derivation of the seismic response of a Newtonian self‐gravitating body to elastic perturbations is presented.
doi_str_mv 10.1063/1.1666481
format article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1666481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jmp</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-951d2254119da40b955988ab618b05f3a4cdc307d1c511d42a966cf962be5b0d3</originalsourceid><addsrcrecordid>eNp9z81KAzEUBeAgCo7VhW8wO6kw9d5MkibLUtQKBTe6DvmV0WlTkkHRp7faogvB1b2Lj8M5hJwjTBBEe4UTFEIwiQekQpCqmQouD0kFQGlDmZTH5KSUZwBEyVhFxrP6KaRVGHLntt86ZNN3H2bo0rpOsV6k9BIuSt2bt1NyFE1fwtn-jsjjzfXDfNEs72_v5rNl41rKhkZx9JRyhqi8YWAV50pKYwVKCzy2hjnvWph6dBzRM2qUEC4qQW3gFnw7IuNdrsuplByi3uRuZfK7RtBfGzXq_catvdzZ4rrhu_QPfk35F-qNj__hv8mfI3Zd4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A geometric generalization of Hooke's law</title><source>AIP Digital Archive</source><creator>Glass, Edward N. ; Winicour, Jeffrey</creator><creatorcontrib>Glass, Edward N. ; Winicour, Jeffrey</creatorcontrib><description>A geometrical version of Hooke's law for prestressed materials is established using techniques suggested by general relativistic elasticity theory. The concept of dragged (D) tensor fields is used to present a simple coordinate independent form of Hook's law for prestressed materials: P̄ij = D Pij + Cijkl η kl , where Pij is the initial stress, Cijkl are the second order elastic coefficients, and η kl is the strain. The effects of initial stresses on Hooke's law have recently been given empirical significance by Wallace and the work here agrees with and simplifies his formalism. The elastic behavior of neutron stars, which requires a general relativistic treatment, is a case in which large prestresses of the type considered here are as important as the elastic modulii themselves. The version of Hooke's law developed here is the classical limit of the general relativistic theory of stellar elasticity. A simple derivation of the seismic response of a Newtonian self‐gravitating body to elastic perturbations is presented.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.1666481</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><ispartof>Journal of mathematical physics, 1973-09, Vol.14 (9), p.1285-1290</ispartof><rights>The American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-951d2254119da40b955988ab618b05f3a4cdc307d1c511d42a966cf962be5b0d3</citedby><cites>FETCH-LOGICAL-c324t-951d2254119da40b955988ab618b05f3a4cdc307d1c511d42a966cf962be5b0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.1666481$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,1559,27924,27925,76390</link.rule.ids></links><search><creatorcontrib>Glass, Edward N.</creatorcontrib><creatorcontrib>Winicour, Jeffrey</creatorcontrib><title>A geometric generalization of Hooke's law</title><title>Journal of mathematical physics</title><description>A geometrical version of Hooke's law for prestressed materials is established using techniques suggested by general relativistic elasticity theory. The concept of dragged (D) tensor fields is used to present a simple coordinate independent form of Hook's law for prestressed materials: P̄ij = D Pij + Cijkl η kl , where Pij is the initial stress, Cijkl are the second order elastic coefficients, and η kl is the strain. The effects of initial stresses on Hooke's law have recently been given empirical significance by Wallace and the work here agrees with and simplifies his formalism. The elastic behavior of neutron stars, which requires a general relativistic treatment, is a case in which large prestresses of the type considered here are as important as the elastic modulii themselves. The version of Hooke's law developed here is the classical limit of the general relativistic theory of stellar elasticity. A simple derivation of the seismic response of a Newtonian self‐gravitating body to elastic perturbations is presented.</description><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><recordid>eNp9z81KAzEUBeAgCo7VhW8wO6kw9d5MkibLUtQKBTe6DvmV0WlTkkHRp7faogvB1b2Lj8M5hJwjTBBEe4UTFEIwiQekQpCqmQouD0kFQGlDmZTH5KSUZwBEyVhFxrP6KaRVGHLntt86ZNN3H2bo0rpOsV6k9BIuSt2bt1NyFE1fwtn-jsjjzfXDfNEs72_v5rNl41rKhkZx9JRyhqi8YWAV50pKYwVKCzy2hjnvWph6dBzRM2qUEC4qQW3gFnw7IuNdrsuplByi3uRuZfK7RtBfGzXq_catvdzZ4rrhu_QPfk35F-qNj__hv8mfI3Zd4g</recordid><startdate>197309</startdate><enddate>197309</enddate><creator>Glass, Edward N.</creator><creator>Winicour, Jeffrey</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197309</creationdate><title>A geometric generalization of Hooke's law</title><author>Glass, Edward N. ; Winicour, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-951d2254119da40b955988ab618b05f3a4cdc307d1c511d42a966cf962be5b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glass, Edward N.</creatorcontrib><creatorcontrib>Winicour, Jeffrey</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glass, Edward N.</au><au>Winicour, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A geometric generalization of Hooke's law</atitle><jtitle>Journal of mathematical physics</jtitle><date>1973-09</date><risdate>1973</risdate><volume>14</volume><issue>9</issue><spage>1285</spage><epage>1290</epage><pages>1285-1290</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>A geometrical version of Hooke's law for prestressed materials is established using techniques suggested by general relativistic elasticity theory. The concept of dragged (D) tensor fields is used to present a simple coordinate independent form of Hook's law for prestressed materials: P̄ij = D Pij + Cijkl η kl , where Pij is the initial stress, Cijkl are the second order elastic coefficients, and η kl is the strain. The effects of initial stresses on Hooke's law have recently been given empirical significance by Wallace and the work here agrees with and simplifies his formalism. The elastic behavior of neutron stars, which requires a general relativistic treatment, is a case in which large prestresses of the type considered here are as important as the elastic modulii themselves. The version of Hooke's law developed here is the classical limit of the general relativistic theory of stellar elasticity. A simple derivation of the seismic response of a Newtonian self‐gravitating body to elastic perturbations is presented.</abstract><doi>10.1063/1.1666481</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 1973-09, Vol.14 (9), p.1285-1290
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_1666481
source AIP Digital Archive
title A geometric generalization of Hooke's law
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20geometric%20generalization%20of%20Hooke's%20law&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Glass,%20Edward%20N.&rft.date=1973-09&rft.volume=14&rft.issue=9&rft.spage=1285&rft.epage=1290&rft.pages=1285-1290&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.1666481&rft_dat=%3Cscitation_cross%3Ejmp%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-951d2254119da40b955988ab618b05f3a4cdc307d1c511d42a966cf962be5b0d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true