Loading…

Intrinsic mechanical properties of diamond-like carbon thin films deposited by filtered cathodic vacuum arc

The mechanical properties—Young’s modulus (E) and hardness (H)—of diamond-like carbon (DLC) thin films deposited on p2+ Si (100) by filtered cathodic vacuum arc with different substrate bias voltage have been studied by nanoindentation measurement, where the substrate effect is included. Their intri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2004-04, Vol.95 (7), p.3509-3515
Main Authors: Gan, Zhenghao, Zhang, Yuebin, Yu, Guoqing, Tan, C. M., Lau, S. P., Tay, B. K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanical properties—Young’s modulus (E) and hardness (H)—of diamond-like carbon (DLC) thin films deposited on p2+ Si (100) by filtered cathodic vacuum arc with different substrate bias voltage have been studied by nanoindentation measurement, where the substrate effect is included. Their intrinsic properties [including E,H, and yield strength (Y)] without the substrate effect are then derived by finite element analysis. The results show that the intrinsic mechanical properties of the DLC thin films are not affected by the film thickness, but significantly affected by change of sp3 bonding fraction caused by varied substrate bias. An empirical relationship among E, Y, and H for DLC thin films has been built, where E, Y, and H are intrinsic properties of DLC thin films. It is also confirmed that, as an empirical rule, the measured H could be used to represent its intrinsic value when the indentation depth is limited to 10% of the film thickness. However, the measured E with the substrate effect does not observe this empirical rule.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.1667005