Loading…

Current density mapping and pinhole imaging in magnetic tunnel junctions via scanning magnetic microscopy

We have applied a magnetoresistive microscopy technique to the imaging of current densities and pinhole formation in magnetic tunnel junction devices. In this work, we demonstrate how the magnetic field distribution at the surface of the device can be used to understand the flow of current within th...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2004-04, Vol.84 (15), p.2937-2939
Main Authors: Schrag, B. D., Liu, Xiaoyong, Shen, Weifeng, Xiao, Gang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-b178e61d79c2e2c24aaf6c560bf52548dc2627686cb9387b6a40e5951b3b7323
cites cdi_FETCH-LOGICAL-c328t-b178e61d79c2e2c24aaf6c560bf52548dc2627686cb9387b6a40e5951b3b7323
container_end_page 2939
container_issue 15
container_start_page 2937
container_title Applied physics letters
container_volume 84
creator Schrag, B. D.
Liu, Xiaoyong
Shen, Weifeng
Xiao, Gang
description We have applied a magnetoresistive microscopy technique to the imaging of current densities and pinhole formation in magnetic tunnel junction devices. In this work, we demonstrate how the magnetic field distribution at the surface of the device can be used to understand the flow of current within the junction itself. By imaging the current-induced fields before and after pinhole formation in several different junctions, we find that many junctions exhibit an unexpectedly complicated current distribution after high-voltage-induced breakdown. Further, we have seen that pinhole locations can be correlated with current inhomogeneities observed before junction breakdown. Finally, we present the results of finite-element simulations which are in good agreement with experimental results.
doi_str_mv 10.1063/1.1695194
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1695194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1695194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b178e61d79c2e2c24aaf6c560bf52548dc2627686cb9387b6a40e5951b3b7323</originalsourceid><addsrcrecordid>eNo9UE1LxDAQDaJgXT34D3L10DWTNB89yuIXLHjZe0nStGZp09KkQv-9LS6eZua9x8y8h9AjkD0QwZ5hD6LkUBZXKAMiZc4A1DXKCCEs35hbdBfjeR05ZSxD_jBPkwsJ1y5Enxbc63H0ocU61HhtvofOYd_rdsN8WOk2uOQtTnMIrsPnOdjkhxDxj9c4Wh3CpvyX9d5OQ7TDuNyjm0Z30T1c6g6d3l5Ph4_8-PX-eXg55pZRlXIDUjkBtSwtddTSQutGWC6IaTjlhaotFVQKJawpmZJG6II4vhozzEhG2Q49_a3d7sbJNdU4rf9PSwWk2iKqoLpExH4B0QtaaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Current density mapping and pinhole imaging in magnetic tunnel junctions via scanning magnetic microscopy</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Schrag, B. D. ; Liu, Xiaoyong ; Shen, Weifeng ; Xiao, Gang</creator><creatorcontrib>Schrag, B. D. ; Liu, Xiaoyong ; Shen, Weifeng ; Xiao, Gang</creatorcontrib><description>We have applied a magnetoresistive microscopy technique to the imaging of current densities and pinhole formation in magnetic tunnel junction devices. In this work, we demonstrate how the magnetic field distribution at the surface of the device can be used to understand the flow of current within the junction itself. By imaging the current-induced fields before and after pinhole formation in several different junctions, we find that many junctions exhibit an unexpectedly complicated current distribution after high-voltage-induced breakdown. Further, we have seen that pinhole locations can be correlated with current inhomogeneities observed before junction breakdown. Finally, we present the results of finite-element simulations which are in good agreement with experimental results.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.1695194</identifier><language>eng</language><ispartof>Applied physics letters, 2004-04, Vol.84 (15), p.2937-2939</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b178e61d79c2e2c24aaf6c560bf52548dc2627686cb9387b6a40e5951b3b7323</citedby><cites>FETCH-LOGICAL-c328t-b178e61d79c2e2c24aaf6c560bf52548dc2627686cb9387b6a40e5951b3b7323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schrag, B. D.</creatorcontrib><creatorcontrib>Liu, Xiaoyong</creatorcontrib><creatorcontrib>Shen, Weifeng</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><title>Current density mapping and pinhole imaging in magnetic tunnel junctions via scanning magnetic microscopy</title><title>Applied physics letters</title><description>We have applied a magnetoresistive microscopy technique to the imaging of current densities and pinhole formation in magnetic tunnel junction devices. In this work, we demonstrate how the magnetic field distribution at the surface of the device can be used to understand the flow of current within the junction itself. By imaging the current-induced fields before and after pinhole formation in several different junctions, we find that many junctions exhibit an unexpectedly complicated current distribution after high-voltage-induced breakdown. Further, we have seen that pinhole locations can be correlated with current inhomogeneities observed before junction breakdown. Finally, we present the results of finite-element simulations which are in good agreement with experimental results.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9UE1LxDAQDaJgXT34D3L10DWTNB89yuIXLHjZe0nStGZp09KkQv-9LS6eZua9x8y8h9AjkD0QwZ5hD6LkUBZXKAMiZc4A1DXKCCEs35hbdBfjeR05ZSxD_jBPkwsJ1y5Enxbc63H0ocU61HhtvofOYd_rdsN8WOk2uOQtTnMIrsPnOdjkhxDxj9c4Wh3CpvyX9d5OQ7TDuNyjm0Z30T1c6g6d3l5Ph4_8-PX-eXg55pZRlXIDUjkBtSwtddTSQutGWC6IaTjlhaotFVQKJawpmZJG6II4vhozzEhG2Q49_a3d7sbJNdU4rf9PSwWk2iKqoLpExH4B0QtaaQ</recordid><startdate>20040412</startdate><enddate>20040412</enddate><creator>Schrag, B. D.</creator><creator>Liu, Xiaoyong</creator><creator>Shen, Weifeng</creator><creator>Xiao, Gang</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040412</creationdate><title>Current density mapping and pinhole imaging in magnetic tunnel junctions via scanning magnetic microscopy</title><author>Schrag, B. D. ; Liu, Xiaoyong ; Shen, Weifeng ; Xiao, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b178e61d79c2e2c24aaf6c560bf52548dc2627686cb9387b6a40e5951b3b7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrag, B. D.</creatorcontrib><creatorcontrib>Liu, Xiaoyong</creatorcontrib><creatorcontrib>Shen, Weifeng</creatorcontrib><creatorcontrib>Xiao, Gang</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrag, B. D.</au><au>Liu, Xiaoyong</au><au>Shen, Weifeng</au><au>Xiao, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Current density mapping and pinhole imaging in magnetic tunnel junctions via scanning magnetic microscopy</atitle><jtitle>Applied physics letters</jtitle><date>2004-04-12</date><risdate>2004</risdate><volume>84</volume><issue>15</issue><spage>2937</spage><epage>2939</epage><pages>2937-2939</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We have applied a magnetoresistive microscopy technique to the imaging of current densities and pinhole formation in magnetic tunnel junction devices. In this work, we demonstrate how the magnetic field distribution at the surface of the device can be used to understand the flow of current within the junction itself. By imaging the current-induced fields before and after pinhole formation in several different junctions, we find that many junctions exhibit an unexpectedly complicated current distribution after high-voltage-induced breakdown. Further, we have seen that pinhole locations can be correlated with current inhomogeneities observed before junction breakdown. Finally, we present the results of finite-element simulations which are in good agreement with experimental results.</abstract><doi>10.1063/1.1695194</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2004-04, Vol.84 (15), p.2937-2939
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_1_1695194
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
title Current density mapping and pinhole imaging in magnetic tunnel junctions via scanning magnetic microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Current%20density%20mapping%20and%20pinhole%20imaging%20in%20magnetic%20tunnel%20junctions%20via%20scanning%20magnetic%20microscopy&rft.jtitle=Applied%20physics%20letters&rft.au=Schrag,%20B.%20D.&rft.date=2004-04-12&rft.volume=84&rft.issue=15&rft.spage=2937&rft.epage=2939&rft.pages=2937-2939&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.1695194&rft_dat=%3Ccrossref%3E10_1063_1_1695194%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-b178e61d79c2e2c24aaf6c560bf52548dc2627686cb9387b6a40e5951b3b7323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true