Loading…
First-Order Stochastic Processes
A general class of ``first-order'' stochastic processes is defined as those for which the probability per unit time of a transition out of a state is proportional to the occupancy of that state. The solution to the differential-difference equation for the process, obtained earlier by Siege...
Saved in:
Published in: | The Journal of chemical physics 1960-01, Vol.32 (1), p.247-250 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-e45e2af5f391badec4a4d03d25516e411b06cf854319ea6914503c7590dab89a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-e45e2af5f391badec4a4d03d25516e411b06cf854319ea6914503c7590dab89a3 |
container_end_page | 250 |
container_issue | 1 |
container_start_page | 247 |
container_title | The Journal of chemical physics |
container_volume | 32 |
creator | Krieger, Irvin M. Gans, Paul J. |
description | A general class of ``first-order'' stochastic processes is defined as those for which the probability per unit time of a transition out of a state is proportional to the occupancy of that state. The solution to the differential-difference equation for the process, obtained earlier by Siegert [Phys. Rev. 76, 1708 (1949)], is obtained here using more elementary mathematics. The resultant solution is used to demonstrate that a system relaxing by first-order processes from one equilibrium state to another will maintain, at all times, a multinomial distribution. |
doi_str_mv | 10.1063/1.1700909 |
format | article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1700909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1700909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e45e2af5f391badec4a4d03d25516e411b06cf854319ea6914503c7590dab89a3</originalsourceid><addsrcrecordid>eNotz01Lw0AQgOFFFIzVg_8gVw9bZ_YrmaMUq0KhQut52exOMKJEdnLx34vY03t74VHqFmGNEOw9rrEDIKAz1SD0pLtAcK4aAIOaAoRLdSXyAQDYGdeodjtVWfS-Fq7tYZnze5Jlyu1rnTOLsFyrizF9Ct-culJv28fj5lnv9k8vm4edzob8otl5Nmn0oyUcUuHskitgi_EeAzvEAUIee-8sEqdA6DzY3HmCkoaekl2pu_9vrrNI5TF-1-kr1Z-IEP9oEeOJZn8Bl9g-6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-Order Stochastic Processes</title><source>American Institute of Physics (AIP) Publications</source><creator>Krieger, Irvin M. ; Gans, Paul J.</creator><creatorcontrib>Krieger, Irvin M. ; Gans, Paul J.</creatorcontrib><description>A general class of ``first-order'' stochastic processes is defined as those for which the probability per unit time of a transition out of a state is proportional to the occupancy of that state. The solution to the differential-difference equation for the process, obtained earlier by Siegert [Phys. Rev. 76, 1708 (1949)], is obtained here using more elementary mathematics. The resultant solution is used to demonstrate that a system relaxing by first-order processes from one equilibrium state to another will maintain, at all times, a multinomial distribution.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.1700909</identifier><language>eng</language><ispartof>The Journal of chemical physics, 1960-01, Vol.32 (1), p.247-250</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e45e2af5f391badec4a4d03d25516e411b06cf854319ea6914503c7590dab89a3</citedby><cites>FETCH-LOGICAL-c295t-e45e2af5f391badec4a4d03d25516e411b06cf854319ea6914503c7590dab89a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krieger, Irvin M.</creatorcontrib><creatorcontrib>Gans, Paul J.</creatorcontrib><title>First-Order Stochastic Processes</title><title>The Journal of chemical physics</title><description>A general class of ``first-order'' stochastic processes is defined as those for which the probability per unit time of a transition out of a state is proportional to the occupancy of that state. The solution to the differential-difference equation for the process, obtained earlier by Siegert [Phys. Rev. 76, 1708 (1949)], is obtained here using more elementary mathematics. The resultant solution is used to demonstrate that a system relaxing by first-order processes from one equilibrium state to another will maintain, at all times, a multinomial distribution.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1960</creationdate><recordtype>article</recordtype><recordid>eNotz01Lw0AQgOFFFIzVg_8gVw9bZ_YrmaMUq0KhQut52exOMKJEdnLx34vY03t74VHqFmGNEOw9rrEDIKAz1SD0pLtAcK4aAIOaAoRLdSXyAQDYGdeodjtVWfS-Fq7tYZnze5Jlyu1rnTOLsFyrizF9Ct-culJv28fj5lnv9k8vm4edzob8otl5Nmn0oyUcUuHskitgi_EeAzvEAUIee-8sEqdA6DzY3HmCkoaekl2pu_9vrrNI5TF-1-kr1Z-IEP9oEeOJZn8Bl9g-6w</recordid><startdate>19600101</startdate><enddate>19600101</enddate><creator>Krieger, Irvin M.</creator><creator>Gans, Paul J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19600101</creationdate><title>First-Order Stochastic Processes</title><author>Krieger, Irvin M. ; Gans, Paul J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e45e2af5f391badec4a4d03d25516e411b06cf854319ea6914503c7590dab89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1960</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krieger, Irvin M.</creatorcontrib><creatorcontrib>Gans, Paul J.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krieger, Irvin M.</au><au>Gans, Paul J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Order Stochastic Processes</atitle><jtitle>The Journal of chemical physics</jtitle><date>1960-01-01</date><risdate>1960</risdate><volume>32</volume><issue>1</issue><spage>247</spage><epage>250</epage><pages>247-250</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>A general class of ``first-order'' stochastic processes is defined as those for which the probability per unit time of a transition out of a state is proportional to the occupancy of that state. The solution to the differential-difference equation for the process, obtained earlier by Siegert [Phys. Rev. 76, 1708 (1949)], is obtained here using more elementary mathematics. The resultant solution is used to demonstrate that a system relaxing by first-order processes from one equilibrium state to another will maintain, at all times, a multinomial distribution.</abstract><doi>10.1063/1.1700909</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 1960-01, Vol.32 (1), p.247-250 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1700909 |
source | American Institute of Physics (AIP) Publications |
title | First-Order Stochastic Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Order%20Stochastic%20Processes&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Krieger,%20Irvin%20M.&rft.date=1960-01-01&rft.volume=32&rft.issue=1&rft.spage=247&rft.epage=250&rft.pages=247-250&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.1700909&rft_dat=%3Ccrossref%3E10_1063_1_1700909%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-e45e2af5f391badec4a4d03d25516e411b06cf854319ea6914503c7590dab89a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |