Loading…
Ion energy distribution change at the transition of power-coupling modes in an immersed-coil-type inductively coupled Ar discharge
The power-coupling mode was changed from a capacitively coupled (E-mode) to an inductively coupled (H-mode) with an increase of rf input power in an immersed-coil-type inductively coupled Ar discharge at 1 mTorr. It was identified that the bimodal-shaped ion energy distribution (IED) of the capaciti...
Saved in:
Published in: | Applied physics letters 2004-04, Vol.84 (17), p.3283-3285 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The power-coupling mode was changed from a capacitively coupled (E-mode) to an inductively coupled (H-mode) with an increase of rf input power in an immersed-coil-type inductively coupled Ar discharge at 1 mTorr. It was identified that the bimodal-shaped ion energy distribution (IED) of the capacitively coupled discharge was dominant below 100 W (E-mode), while the single peak due to the inductively coupled discharge became dominant above 250 W (H-mode). In addition, it was possible to quantitatively determine the relative amounts of capacitively and inductively coupled components at both modes, making the analysis of IED one of most effective methods to investigate the power-coupling mode transition in an inductively coupled plasma system. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1715140 |