Loading…

Resonance Absorption of Neutrons by Uranium Cylinders

The integrated effective resonance neutron absorption cross section of uranium-238 cylinders has been experimentally investigated in the Hanford Test Pile. The results of reactivity measurements were interpreted to yield the effective resonance integral as a function of the surface-to-mass ratio of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 1957-01, Vol.28 (2), p.250-254
Main Author: Davis, Monte V.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-336e0d9f5bec3b7c66eff23c653476d62d0bb654d370c20cffd035642a6002dc3
cites cdi_FETCH-LOGICAL-c351t-336e0d9f5bec3b7c66eff23c653476d62d0bb654d370c20cffd035642a6002dc3
container_end_page 254
container_issue 2
container_start_page 250
container_title Journal of applied physics
container_volume 28
creator Davis, Monte V.
description The integrated effective resonance neutron absorption cross section of uranium-238 cylinders has been experimentally investigated in the Hanford Test Pile. The results of reactivity measurements were interpreted to yield the effective resonance integral as a function of the surface-to-mass ratio of the uranium cylinders. The experiments were extended to determine the Doppler coefficients resulting from heating the uranium in a constant neutron spectrum in the reactor. The effective resonance integral, ∫ (σa0)effdE′/E′, can be approximated as a function of the surface-to-mass ratio by ∫ (σa0)effdE′E′=6.0{1+15.6SM[1−2.18SM+2.19(SM)2]}. The Doppler coefficient of resonance escape probability for the reactor is 1p∂p∂T=(−2.14±0.16)10−5/∘C,and the value assigned to the coefficient of the volume absorption of the resonance integral is 1A∂A∂T=(1.56±0.12)10−4/∘C.
doi_str_mv 10.1063/1.1722717
format article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1722717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_1722717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-336e0d9f5bec3b7c66eff23c653476d62d0bb654d370c20cffd035642a6002dc3</originalsourceid><addsrcrecordid>eNotj8tKxDAUQIMoWEcX_kG2Ljrem9sk7XIovmBQEGddmhdUZpIh6Sz69yrO6uwO5zB2j7BGUPSIa9RCaNQXrEJou1pLCZesAhBYt53urtlNKd8AiC11FZOfvqQ4Ruv5xpSUj_OUIk-Bv_vTnFMs3Cx8l8c4nQ68X_ZTdD6XW3YVxn3xd2eu2O756at_rbcfL2_9ZltbkjjXRMqD64I03pLRVikfgiCrJDVaOSUcGKNk40iDFWBDcEBSNWJUv73O0oo9_HttTqVkH4Zjng5jXgaE4e93wOH8Sz9wRkcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resonance Absorption of Neutrons by Uranium Cylinders</title><source>AIP Digital Archive</source><creator>Davis, Monte V.</creator><creatorcontrib>Davis, Monte V.</creatorcontrib><description>The integrated effective resonance neutron absorption cross section of uranium-238 cylinders has been experimentally investigated in the Hanford Test Pile. The results of reactivity measurements were interpreted to yield the effective resonance integral as a function of the surface-to-mass ratio of the uranium cylinders. The experiments were extended to determine the Doppler coefficients resulting from heating the uranium in a constant neutron spectrum in the reactor. The effective resonance integral, ∫ (σa0)effdE′/E′, can be approximated as a function of the surface-to-mass ratio by ∫ (σa0)effdE′E′=6.0{1+15.6SM[1−2.18SM+2.19(SM)2]}. The Doppler coefficient of resonance escape probability for the reactor is 1p∂p∂T=(−2.14±0.16)10−5/∘C,and the value assigned to the coefficient of the volume absorption of the resonance integral is 1A∂A∂T=(1.56±0.12)10−4/∘C.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.1722717</identifier><language>eng</language><ispartof>Journal of applied physics, 1957-01, Vol.28 (2), p.250-254</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-336e0d9f5bec3b7c66eff23c653476d62d0bb654d370c20cffd035642a6002dc3</citedby><cites>FETCH-LOGICAL-c351t-336e0d9f5bec3b7c66eff23c653476d62d0bb654d370c20cffd035642a6002dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Davis, Monte V.</creatorcontrib><title>Resonance Absorption of Neutrons by Uranium Cylinders</title><title>Journal of applied physics</title><description>The integrated effective resonance neutron absorption cross section of uranium-238 cylinders has been experimentally investigated in the Hanford Test Pile. The results of reactivity measurements were interpreted to yield the effective resonance integral as a function of the surface-to-mass ratio of the uranium cylinders. The experiments were extended to determine the Doppler coefficients resulting from heating the uranium in a constant neutron spectrum in the reactor. The effective resonance integral, ∫ (σa0)effdE′/E′, can be approximated as a function of the surface-to-mass ratio by ∫ (σa0)effdE′E′=6.0{1+15.6SM[1−2.18SM+2.19(SM)2]}. The Doppler coefficient of resonance escape probability for the reactor is 1p∂p∂T=(−2.14±0.16)10−5/∘C,and the value assigned to the coefficient of the volume absorption of the resonance integral is 1A∂A∂T=(1.56±0.12)10−4/∘C.</description><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1957</creationdate><recordtype>article</recordtype><recordid>eNotj8tKxDAUQIMoWEcX_kG2Ljrem9sk7XIovmBQEGddmhdUZpIh6Sz69yrO6uwO5zB2j7BGUPSIa9RCaNQXrEJou1pLCZesAhBYt53urtlNKd8AiC11FZOfvqQ4Ruv5xpSUj_OUIk-Bv_vTnFMs3Cx8l8c4nQ68X_ZTdD6XW3YVxn3xd2eu2O756at_rbcfL2_9ZltbkjjXRMqD64I03pLRVikfgiCrJDVaOSUcGKNk40iDFWBDcEBSNWJUv73O0oo9_HttTqVkH4Zjng5jXgaE4e93wOH8Sz9wRkcU</recordid><startdate>19570101</startdate><enddate>19570101</enddate><creator>Davis, Monte V.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19570101</creationdate><title>Resonance Absorption of Neutrons by Uranium Cylinders</title><author>Davis, Monte V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-336e0d9f5bec3b7c66eff23c653476d62d0bb654d370c20cffd035642a6002dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1957</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Monte V.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Monte V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonance Absorption of Neutrons by Uranium Cylinders</atitle><jtitle>Journal of applied physics</jtitle><date>1957-01-01</date><risdate>1957</risdate><volume>28</volume><issue>2</issue><spage>250</spage><epage>254</epage><pages>250-254</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The integrated effective resonance neutron absorption cross section of uranium-238 cylinders has been experimentally investigated in the Hanford Test Pile. The results of reactivity measurements were interpreted to yield the effective resonance integral as a function of the surface-to-mass ratio of the uranium cylinders. The experiments were extended to determine the Doppler coefficients resulting from heating the uranium in a constant neutron spectrum in the reactor. The effective resonance integral, ∫ (σa0)effdE′/E′, can be approximated as a function of the surface-to-mass ratio by ∫ (σa0)effdE′E′=6.0{1+15.6SM[1−2.18SM+2.19(SM)2]}. The Doppler coefficient of resonance escape probability for the reactor is 1p∂p∂T=(−2.14±0.16)10−5/∘C,and the value assigned to the coefficient of the volume absorption of the resonance integral is 1A∂A∂T=(1.56±0.12)10−4/∘C.</abstract><doi>10.1063/1.1722717</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 1957-01, Vol.28 (2), p.250-254
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_1_1722717
source AIP Digital Archive
title Resonance Absorption of Neutrons by Uranium Cylinders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonance%20Absorption%20of%20Neutrons%20by%20Uranium%20Cylinders&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Davis,%20Monte%20V.&rft.date=1957-01-01&rft.volume=28&rft.issue=2&rft.spage=250&rft.epage=254&rft.pages=250-254&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.1722717&rft_dat=%3Ccrossref%3E10_1063_1_1722717%3C/crossref%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-336e0d9f5bec3b7c66eff23c653476d62d0bb654d370c20cffd035642a6002dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true