Loading…
A probe of intrinsic valence band electronic structure: Hard x-ray photoemission
Hard x-ray valence band photoemission spectroscopy (PES) is realized using high-energy and high-brilliance synchrotron radiation. High-energy (∼6 keV) excitation results in larger probing depths of photoelectrons compared to conventional PES, and enables a study of intrinsic electronic property of m...
Saved in:
Published in: | Applied physics letters 2004-05, Vol.84 (21), p.4310-4312 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hard x-ray valence band photoemission spectroscopy (PES) is realized using high-energy and high-brilliance synchrotron radiation. High-energy (∼6 keV) excitation results in larger probing depths of photoelectrons compared to conventional PES, and enables a study of intrinsic electronic property of materials in actual device structures much less influenced by surface condition. With this technique, requirements for surface preparation are greatly reduced, if not eliminated. It is a nondestructive tool to determine electronic structure from surface to genuine bulk as shown by a study on SiO2/Si(100). Electronic structure modification related to the ferromagnetism in the diluted magnetic semiconductor Ga0.96Mn0.04N is also observed. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1756209 |