Loading…
Imaging nanostructures with coherent phonon pulses
We demonstrate submicron resolution imaging using picosecond acoustic phonon pulses. High-frequency acoustic pulses are generated by impulsive thermoelastic excitation of a patterned 15-nm-thick metal film on a crystalline substrate using ultrafast optical pulses. The spatiotemporal diffracted acous...
Saved in:
Published in: | Applied physics letters 2004-06, Vol.84 (25), p.5180-5182 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We demonstrate submicron resolution imaging using picosecond acoustic phonon pulses. High-frequency acoustic pulses are generated by impulsive thermoelastic excitation of a patterned 15-nm-thick metal film on a crystalline substrate using ultrafast optical pulses. The spatiotemporal diffracted acoustic strain field is measured on the opposite side of the substrate, and this field is used in a time-reversal algorithm to reconstruct the object. The image resolution is characterized using lithographically defined 1-micron-period Al structures on Si. Straightforward technical improvements should lead to resolution approaching 45nm, extending the resolution of acoustic microscopy into the nanoscale regime. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.1764599 |