Loading…
Third order aberration theory of double Wien filters
The second and the third order aberration theory for a double Wien filter have been analytically developed. A new second order aberration-free condition is found at the image plane of the second filter. This condition is met when b 2 =−1/4 , e 2 =−1/2 , and b 3 −e 3 =−1/8 , where b 2 =B 2 R/B 1 , e...
Saved in:
Published in: | Review of scientific instruments 2004-11, Vol.75 (11), p.4434-4441 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-46fcf1ca11211e9a9684051c8bf0421b86952ef7da561d48a000c9e5b106b0053 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-46fcf1ca11211e9a9684051c8bf0421b86952ef7da561d48a000c9e5b106b0053 |
container_end_page | 4441 |
container_issue | 11 |
container_start_page | 4434 |
container_title | Review of scientific instruments |
container_volume | 75 |
creator | Ioanoviciu, D. Tsuno, K. Martinez, G. |
description | The second and the third order aberration theory for a double Wien filter have been analytically developed. A new second order aberration-free condition is found at the image plane of the second filter. This condition is met when
b
2
=−1/4
,
e
2
=−1/2
, and
b
3
−e
3
=−1/8
, where
b
2
=B
2
R/B
1
,
e
2
=E
2
R/E
1
,
b
3
=B
3
R
2
/B
1
, and
e
3
=E
3
R
2
/E
1
. Here,
R
is the cyclotron radius and
E
1
,
B
1
,
E
2
,
B
2
,
E
3
, and
B
3
are the dipole, quadrupole, and hexapole components of electric and magnetic fields, respectively. This condition is different from the second order aberration-free condition for a single Wien filter, which is satisfied when
b
2
=−3/4
,
e
2
=−1
, and
b
3
−e
3
=−3/8
. The geometrical second order aberration-free condition has also been found, and requires that
e
3
−b
3
=(m−1)/8
,
e
2
=−m/4
, and
b
2
=(1−m)/4
. This last set is sufficient to satisfy the above two sets of conditions as well. Residual third order aberrations are calculated for various
m
. The third order aberrations at the second focus are very small when the new aberration-free condition is fulfilled. |
doi_str_mv | 10.1063/1.1777410 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1777410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>rsi</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-46fcf1ca11211e9a9684051c8bf0421b86952ef7da561d48a000c9e5b106b0053</originalsourceid><addsrcrecordid>eNqdj01LAzEURYMoOFYX_oNsFabmTTJJZilFq1BwU3EZ8kkjY1OSUei_N9qCe-_mbg7v3YPQNZA5EE7vYA5CCAbkBDVA5NAK3tFT1BBCWcsFk-foopR3UtMDNIitNzE7nLLzGWvjc9ZTTFs8bXzKe5wCdunTjB6_Rb_FIY6Tz-USnQU9Fn917Bl6fXxYL57a1cvyeXG_ai3l_dQyHmwAqwE6AD_ogUtWv1ppAmEdGMmHvvNBON1zcEzqOsoOvjfVxNR9dIZuDndtTqVkH9Quxw-d9wqI-tFVoI66lb09sMXG6dfhf_BXyn-g2rlAvwEj6GIB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Third order aberration theory of double Wien filters</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Ioanoviciu, D. ; Tsuno, K. ; Martinez, G.</creator><creatorcontrib>Ioanoviciu, D. ; Tsuno, K. ; Martinez, G.</creatorcontrib><description>The second and the third order aberration theory for a double Wien filter have been analytically developed. A new second order aberration-free condition is found at the image plane of the second filter. This condition is met when
b
2
=−1/4
,
e
2
=−1/2
, and
b
3
−e
3
=−1/8
, where
b
2
=B
2
R/B
1
,
e
2
=E
2
R/E
1
,
b
3
=B
3
R
2
/B
1
, and
e
3
=E
3
R
2
/E
1
. Here,
R
is the cyclotron radius and
E
1
,
B
1
,
E
2
,
B
2
,
E
3
, and
B
3
are the dipole, quadrupole, and hexapole components of electric and magnetic fields, respectively. This condition is different from the second order aberration-free condition for a single Wien filter, which is satisfied when
b
2
=−3/4
,
e
2
=−1
, and
b
3
−e
3
=−3/8
. The geometrical second order aberration-free condition has also been found, and requires that
e
3
−b
3
=(m−1)/8
,
e
2
=−m/4
, and
b
2
=(1−m)/4
. This last set is sufficient to satisfy the above two sets of conditions as well. Residual third order aberrations are calculated for various
m
. The third order aberrations at the second focus are very small when the new aberration-free condition is fulfilled.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.1777410</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><ispartof>Review of scientific instruments, 2004-11, Vol.75 (11), p.4434-4441</ispartof><rights>American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-46fcf1ca11211e9a9684051c8bf0421b86952ef7da561d48a000c9e5b106b0053</citedby><cites>FETCH-LOGICAL-c365t-46fcf1ca11211e9a9684051c8bf0421b86952ef7da561d48a000c9e5b106b0053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.1777410$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,778,780,791,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Ioanoviciu, D.</creatorcontrib><creatorcontrib>Tsuno, K.</creatorcontrib><creatorcontrib>Martinez, G.</creatorcontrib><title>Third order aberration theory of double Wien filters</title><title>Review of scientific instruments</title><description>The second and the third order aberration theory for a double Wien filter have been analytically developed. A new second order aberration-free condition is found at the image plane of the second filter. This condition is met when
b
2
=−1/4
,
e
2
=−1/2
, and
b
3
−e
3
=−1/8
, where
b
2
=B
2
R/B
1
,
e
2
=E
2
R/E
1
,
b
3
=B
3
R
2
/B
1
, and
e
3
=E
3
R
2
/E
1
. Here,
R
is the cyclotron radius and
E
1
,
B
1
,
E
2
,
B
2
,
E
3
, and
B
3
are the dipole, quadrupole, and hexapole components of electric and magnetic fields, respectively. This condition is different from the second order aberration-free condition for a single Wien filter, which is satisfied when
b
2
=−3/4
,
e
2
=−1
, and
b
3
−e
3
=−3/8
. The geometrical second order aberration-free condition has also been found, and requires that
e
3
−b
3
=(m−1)/8
,
e
2
=−m/4
, and
b
2
=(1−m)/4
. This last set is sufficient to satisfy the above two sets of conditions as well. Residual third order aberrations are calculated for various
m
. The third order aberrations at the second focus are very small when the new aberration-free condition is fulfilled.</description><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqdj01LAzEURYMoOFYX_oNsFabmTTJJZilFq1BwU3EZ8kkjY1OSUei_N9qCe-_mbg7v3YPQNZA5EE7vYA5CCAbkBDVA5NAK3tFT1BBCWcsFk-foopR3UtMDNIitNzE7nLLzGWvjc9ZTTFs8bXzKe5wCdunTjB6_Rb_FIY6Tz-USnQU9Fn917Bl6fXxYL57a1cvyeXG_ai3l_dQyHmwAqwE6AD_ogUtWv1ppAmEdGMmHvvNBON1zcEzqOsoOvjfVxNR9dIZuDndtTqVkH9Quxw-d9wqI-tFVoI66lb09sMXG6dfhf_BXyn-g2rlAvwEj6GIB</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Ioanoviciu, D.</creator><creator>Tsuno, K.</creator><creator>Martinez, G.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200411</creationdate><title>Third order aberration theory of double Wien filters</title><author>Ioanoviciu, D. ; Tsuno, K. ; Martinez, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-46fcf1ca11211e9a9684051c8bf0421b86952ef7da561d48a000c9e5b106b0053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ioanoviciu, D.</creatorcontrib><creatorcontrib>Tsuno, K.</creatorcontrib><creatorcontrib>Martinez, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ioanoviciu, D.</au><au>Tsuno, K.</au><au>Martinez, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Third order aberration theory of double Wien filters</atitle><jtitle>Review of scientific instruments</jtitle><date>2004-11</date><risdate>2004</risdate><volume>75</volume><issue>11</issue><spage>4434</spage><epage>4441</epage><pages>4434-4441</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>The second and the third order aberration theory for a double Wien filter have been analytically developed. A new second order aberration-free condition is found at the image plane of the second filter. This condition is met when
b
2
=−1/4
,
e
2
=−1/2
, and
b
3
−e
3
=−1/8
, where
b
2
=B
2
R/B
1
,
e
2
=E
2
R/E
1
,
b
3
=B
3
R
2
/B
1
, and
e
3
=E
3
R
2
/E
1
. Here,
R
is the cyclotron radius and
E
1
,
B
1
,
E
2
,
B
2
,
E
3
, and
B
3
are the dipole, quadrupole, and hexapole components of electric and magnetic fields, respectively. This condition is different from the second order aberration-free condition for a single Wien filter, which is satisfied when
b
2
=−3/4
,
e
2
=−1
, and
b
3
−e
3
=−3/8
. The geometrical second order aberration-free condition has also been found, and requires that
e
3
−b
3
=(m−1)/8
,
e
2
=−m/4
, and
b
2
=(1−m)/4
. This last set is sufficient to satisfy the above two sets of conditions as well. Residual third order aberrations are calculated for various
m
. The third order aberrations at the second focus are very small when the new aberration-free condition is fulfilled.</abstract><doi>10.1063/1.1777410</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2004-11, Vol.75 (11), p.4434-4441 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1777410 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
title | Third order aberration theory of double Wien filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A37%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Third%20order%20aberration%20theory%20of%20double%20Wien%20filters&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Ioanoviciu,%20D.&rft.date=2004-11&rft.volume=75&rft.issue=11&rft.spage=4434&rft.epage=4441&rft.pages=4434-4441&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.1777410&rft_dat=%3Cscitation_cross%3Ersi%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-46fcf1ca11211e9a9684051c8bf0421b86952ef7da561d48a000c9e5b106b0053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |