Loading…

Signal processing in photoacoustic detection of phase transitions by means of the autospectra correlation-based method: Evaluation with ceramic BaTiO3

This work describes a simple numerical procedure which, when applied to digitally recorded photoacoustic (PA) signals, allows the construction of thermal profiles (rS,drS/dT) to determine: the transition order, the phase transition temperature (Tc), and the phase transformation temperature range (ΔT...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2004-09, Vol.75 (9), p.2887-2891
Main Authors: Mejía-Uriarte, E. V., Navarrete, M., Villagrán-Muniz, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work describes a simple numerical procedure which, when applied to digitally recorded photoacoustic (PA) signals, allows the construction of thermal profiles (rS,drS/dT) to determine: the transition order, the phase transition temperature (Tc), and the phase transformation temperature range (ΔT), on samples, which undergo low–high transitions. During continuous heating of the sample, the ultrasonic signal was generated using a pulsed laser beam incident on a surface and detected on the opposite surface of the sample using a long quartz bar attached to a piezoelectric sensor. The thermal profile, rS, is built from a sequence of the ordinary correlation coefficients ri associated with an interval of temperature. The ri coefficients are calculated from amplitude spectra pairs. The amplitude spectra are obtained via fast Fourier transforms from original PA records. This procedure is applied on samples of bulk ceramic BaTiO3 to obtain their thermal behavior. The PA signal and temperature sample were registered every 0.2°. The samples were heated from room temperature to 137 °C at a rate of 0.1 °C min−1. The thermal profile rS shows the entire thermal history including the structural phase transition from tetragonal to cubic (T-C), which appears as a jump on the graph within an uncertainty of 2%. The drS/dT profile shows that the T-C phase transformation occurs over a range of temperatures. The results are in agreement with those reported in the literature.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.1781365