Loading…
Capillary filling speed of water in nanochannels
The capillary filling speed of water in nanochannels with a rectangular cross section and a height on the order of 100 nm has been measured over a length of 1 cm . The measured position of the meniscus as a function of time qualitatively follows the Washburn model. Quantitatively, however, there is...
Saved in:
Published in: | Applied physics letters 2004-10, Vol.85 (15), p.3274-3276 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-48e123b71d8f741849568aeee27bdeaa47db6ca5e0bd5b13bf2e83290f511aff3 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-48e123b71d8f741849568aeee27bdeaa47db6ca5e0bd5b13bf2e83290f511aff3 |
container_end_page | 3276 |
container_issue | 15 |
container_start_page | 3274 |
container_title | Applied physics letters |
container_volume | 85 |
creator | Tas, N. R. Haneveld, J. Jansen, H. V. Elwenspoek, M. van den Berg, A. |
description | The capillary filling speed of water in nanochannels with a rectangular cross section and a height on the order of
100
nm
has been measured over a length of
1
cm
. The measured position of the meniscus as a function of time qualitatively follows the Washburn model. Quantitatively, however, there is a lower than expected filling speed, which we attribute to the electro-viscous effect. For demineralized water in equilibrium with air the elevation of the apparent viscosity amounts up to
24
±
11
%
in the smallest channels (
53
nm
height). When using a
0.1
M
NaCl (aq) solution the elevation of the apparent viscosity is significantly reduced. |
doi_str_mv | 10.1063/1.1804602 |
format | article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_1804602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-48e123b71d8f741849568aeee27bdeaa47db6ca5e0bd5b13bf2e83290f511aff3</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoWEcX_oNsXXTMy2uadCNI8QsG3Og6JO2LRmpamoL4763M4M7V5cLhcg9jlyC2IGq8hi0YUdVCHrEChNYlAphjVgghsKwbBafsLOePtSqJWDDRuikOg5u_eVgzpjeeJ6Kej4F_uYVmHhNPLo3du0uJhnzOToIbMl0ccsNe7-9e2sdy9_zw1N7uyg4NLmVlCCR6Db0JugJTNao2joik9j05V-ne151TJHyvPKAPkgzKRgQF4ELADbva73bzmPNMwU5z_Fx_WhD2V9WCPaiu7M2ezV1c3BLH9D_852sPvjZP-AP_2Fs2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Capillary filling speed of water in nanochannels</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Tas, N. R. ; Haneveld, J. ; Jansen, H. V. ; Elwenspoek, M. ; van den Berg, A.</creator><creatorcontrib>Tas, N. R. ; Haneveld, J. ; Jansen, H. V. ; Elwenspoek, M. ; van den Berg, A.</creatorcontrib><description>The capillary filling speed of water in nanochannels with a rectangular cross section and a height on the order of
100
nm
has been measured over a length of
1
cm
. The measured position of the meniscus as a function of time qualitatively follows the Washburn model. Quantitatively, however, there is a lower than expected filling speed, which we attribute to the electro-viscous effect. For demineralized water in equilibrium with air the elevation of the apparent viscosity amounts up to
24
±
11
%
in the smallest channels (
53
nm
height). When using a
0.1
M
NaCl (aq) solution the elevation of the apparent viscosity is significantly reduced.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.1804602</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>American Institute of Physics</publisher><ispartof>Applied physics letters, 2004-10, Vol.85 (15), p.3274-3276</ispartof><rights>2004 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-48e123b71d8f741849568aeee27bdeaa47db6ca5e0bd5b13bf2e83290f511aff3</citedby><cites>FETCH-LOGICAL-c383t-48e123b71d8f741849568aeee27bdeaa47db6ca5e0bd5b13bf2e83290f511aff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,782,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tas, N. R.</creatorcontrib><creatorcontrib>Haneveld, J.</creatorcontrib><creatorcontrib>Jansen, H. V.</creatorcontrib><creatorcontrib>Elwenspoek, M.</creatorcontrib><creatorcontrib>van den Berg, A.</creatorcontrib><title>Capillary filling speed of water in nanochannels</title><title>Applied physics letters</title><description>The capillary filling speed of water in nanochannels with a rectangular cross section and a height on the order of
100
nm
has been measured over a length of
1
cm
. The measured position of the meniscus as a function of time qualitatively follows the Washburn model. Quantitatively, however, there is a lower than expected filling speed, which we attribute to the electro-viscous effect. For demineralized water in equilibrium with air the elevation of the apparent viscosity amounts up to
24
±
11
%
in the smallest channels (
53
nm
height). When using a
0.1
M
NaCl (aq) solution the elevation of the apparent viscosity is significantly reduced.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoWEcX_oNsXXTMy2uadCNI8QsG3Og6JO2LRmpamoL4763M4M7V5cLhcg9jlyC2IGq8hi0YUdVCHrEChNYlAphjVgghsKwbBafsLOePtSqJWDDRuikOg5u_eVgzpjeeJ6Kej4F_uYVmHhNPLo3du0uJhnzOToIbMl0ccsNe7-9e2sdy9_zw1N7uyg4NLmVlCCR6Db0JugJTNao2joik9j05V-ne151TJHyvPKAPkgzKRgQF4ELADbva73bzmPNMwU5z_Fx_WhD2V9WCPaiu7M2ezV1c3BLH9D_852sPvjZP-AP_2Fs2</recordid><startdate>20041011</startdate><enddate>20041011</enddate><creator>Tas, N. R.</creator><creator>Haneveld, J.</creator><creator>Jansen, H. V.</creator><creator>Elwenspoek, M.</creator><creator>van den Berg, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041011</creationdate><title>Capillary filling speed of water in nanochannels</title><author>Tas, N. R. ; Haneveld, J. ; Jansen, H. V. ; Elwenspoek, M. ; van den Berg, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-48e123b71d8f741849568aeee27bdeaa47db6ca5e0bd5b13bf2e83290f511aff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tas, N. R.</creatorcontrib><creatorcontrib>Haneveld, J.</creatorcontrib><creatorcontrib>Jansen, H. V.</creatorcontrib><creatorcontrib>Elwenspoek, M.</creatorcontrib><creatorcontrib>van den Berg, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tas, N. R.</au><au>Haneveld, J.</au><au>Jansen, H. V.</au><au>Elwenspoek, M.</au><au>van den Berg, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary filling speed of water in nanochannels</atitle><jtitle>Applied physics letters</jtitle><date>2004-10-11</date><risdate>2004</risdate><volume>85</volume><issue>15</issue><spage>3274</spage><epage>3276</epage><pages>3274-3276</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The capillary filling speed of water in nanochannels with a rectangular cross section and a height on the order of
100
nm
has been measured over a length of
1
cm
. The measured position of the meniscus as a function of time qualitatively follows the Washburn model. Quantitatively, however, there is a lower than expected filling speed, which we attribute to the electro-viscous effect. For demineralized water in equilibrium with air the elevation of the apparent viscosity amounts up to
24
±
11
%
in the smallest channels (
53
nm
height). When using a
0.1
M
NaCl (aq) solution the elevation of the apparent viscosity is significantly reduced.</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.1804602</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2004-10, Vol.85 (15), p.3274-3276 |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_1_1804602 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
title | Capillary filling speed of water in nanochannels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20filling%20speed%20of%20water%20in%20nanochannels&rft.jtitle=Applied%20physics%20letters&rft.au=Tas,%20N.%20R.&rft.date=2004-10-11&rft.volume=85&rft.issue=15&rft.spage=3274&rft.epage=3276&rft.pages=3274-3276&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.1804602&rft_dat=%3Cscitation_cross%3Eapl%3C/scitation_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-48e123b71d8f741849568aeee27bdeaa47db6ca5e0bd5b13bf2e83290f511aff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |