Loading…
A cryogenic measurement setup for microelectromechanical systems used in space applications
We present a cryogenic measurement setup installed inside a focused-ion-beam (FIB) system to characterize and microrepair microelectromechanical systems (MEMS) for space applications. The setup allows testing of MEMS devices under vacuum condition of 10−6Torr at variable temperatures ranging from 29...
Saved in:
Published in: | Review of scientific instruments 2005-04, Vol.76 (4) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a cryogenic measurement setup installed inside a focused-ion-beam (FIB) system to characterize and microrepair microelectromechanical systems (MEMS) for space applications. The setup allows testing of MEMS devices under vacuum condition of 10−6Torr at variable temperatures ranging from 298to20K. In the experiment, a lead-zirconate-titanate translator powered by a function generator and a dc voltage is utilized as an actuator, and a thin-film thermo-resistor fabricated with test devices is used as an integrated temperature sensor. Additionally, a motorized x-y-z stage is installed to achieve highly accurate positioning function. Resonant techniques and bending tests based on the designed setup are developed to measure the mechanical properties of silicon nitride thin films at cryogenic temperatures. Combined with the functions of the FIB system, this setup also demonstrates the capability to microrepair microshutter arrays, programmable field selectors in the NASA James Webb Space Telescopes. The presented test setup exhibits its feasibility to test MEMS devices needed for the space applications and can be extended to other cryogenic applications. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/1.1884192 |