Loading…

Metal catalyst-free low-temperature carbon nanotube growth on SiGe islands

A metal-catalyst-free growth method of carbon nanotubes (CNTs) has been developed using chemical vapor deposition of CNTs on carbon-implanted SiGe islands on Si substrates. From scanning electron microscopy and Raman measurements, the fabricated CNTs are identified as single-walled CNTs with a diame...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics letters 2005-06, Vol.86 (23), p.233110-233110-3
Main Authors: Uchino, T., Bourdakos, K. N., de Groot, C. H., Ashburn, P., Kiziroglou, M. E., Dilliway, G. D., Smith, D. C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A metal-catalyst-free growth method of carbon nanotubes (CNTs) has been developed using chemical vapor deposition of CNTs on carbon-implanted SiGe islands on Si substrates. From scanning electron microscopy and Raman measurements, the fabricated CNTs are identified as single-walled CNTs with a diameter ranging from 1.2 to 1.6 nm. Essential parts of the substrate preparation after CVD SiGe growth and carbon implant are a chemical oxidization by hydrogen peroxide solution and a heat treatment at 1000°C prior to CNT growth. We believe that these processes enhance surface decomposition and assist the formation of carbon clusters, which play a role in seeding CNT growth. The growth technique is a practical method of growing metal-free CNTs for a variety of applications, while at the same time opening up the prospect of merging CNT devices into silicon very-large-scale-integration technology.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.1946191